laplace.utils.enums
#
Classes:
-
SubsetOfWeights–Valid options for
subset_of_weights. -
HessianStructure–Valid options for
hessian_structure. -
Likelihood–Valid options for
likelihood. -
PredType–Valid options for
pred_type. -
LinkApprox–Valid options for
link_approx. -
TuningMethod–Valid options for the
methodparameter inoptimize_prior_precision. -
PriorStructure–Valid options for the
prior_structureinoptimize_prior_precision.
SubsetOfWeights
#
Valid options for subset_of_weights.
Attributes:
-
ALL–All-layer, all-parameter Laplace.
-
LAST_LAYER–Last-layer Laplace.
-
SUBNETWORK–Subnetwork Laplace.
HessianStructure
#
Valid options for hessian_structure.
Attributes:
Likelihood
#
Valid options for likelihood.
Attributes:
-
REGRESSION–Homoskedastic regression, assuming
loss_fn = nn.MSELoss(). -
CLASSIFICATION–Classification, assuming
loss_fn = nn.CrossEntropyLoss(). -
REWARD_MODELING–Bradley-Terry likelihood, for preference learning / reward modeling.
PredType
#
Valid options for pred_type.
Attributes:
LinkApprox
#
Valid options for link_approx.
Only works with likelihood = Likelihood.CLASSIFICATION.
Attributes:
-
MC–Monte-Carlo approximation in the function space on top of the GLM predictive.
-
PROBIT–Closed-form multiclass probit approximation.
-
BRIDGE–Closed-form Laplace Bridge approximation.
-
BRIDGE_NORM–Closed-form Laplace Bridge approximation with normalization factor.
BRIDGE_NORM
#
Closed-form Laplace Bridge approximation with normalization factor.
Preferable to BRIDGE.
TuningMethod
#
Valid options for the method parameter in optimize_prior_precision.
Attributes:
-
MARGLIK–Marginal-likelihood loss via SGD. Does not require validation data.
-
GRIDSEARCH–Grid search. Requires validation data.
PriorStructure
#
Valid options for the prior_structure in optimize_prior_precision.
Attributes:
-
SCALAR–Scalar prior precision \( \tau I, \tau \in \mathbf{R} \).
-
DIAG–Scalar prior precision \( \tau \in \mathbb{R}^p \).
-
LAYERWISE–Layerwise prior precision, i.e. a single scalar prior precision for each block
LAYERWISE
#
Layerwise prior precision, i.e. a single scalar prior precision for each block (corresponding to each the NN's layer) of the diagonal prior-precision matrix..