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Abstract

Deep neural networks achieve state-of-the-art performance in many real-world machine learn-
ing problems and alleviate the need to design features by hand. However, their flexibility often
comes at a cost. Neural network models are hard to interpret, often overconfident, and do not
quantify how probable they are given a dataset. The Bayesian approach to infer neural networks
is one way to tackle these issues. However, exact Bayesian inference for neural networks is in-
tractable. Therefore, Bayesian deep learning combines approximate inference and optimization
methods to design efficient methods that provide an approximate solution. Nonetheless, the
combination of both methods is often not well understood.

In this thesis, we disentangle the generalized Gauss-Newton and approximate inference for
Bayesian deep learning. The generalized Gauss-Newton method is an optimization method
that is used in several popular Bayesian deep learning algorithms. In particular, algorithms that
combine the Gauss-Newton method with the Laplace and Gaussian variational approximation
have recently led to state-of-the-art results in Bayesian deep learning. While the Laplace and
Gaussian variational approximation have been studied extensively, their interplay with the
Gauss-Newton method remains unclear. For example, we know that both approximate inference
methods compute a Gaussian approximation to the posterior. However, it is not clear how the
Gauss-Newton method impacts the underlying probabilistic model or posterior approximation.
Additionally, recent criticism of priors and posterior approximations in Bayesian deep learning
further urges the need for a deeper understanding of practical algorithms.

The individual analysis of the Gauss-Newton method and Laplace and Gaussian variational
approximations for neural networks provides both theoretical insight and new practical algo-
rithms. We find that the Gauss-Newton method simplifies the underlying probabilistic model
significantly. In particular, the combination of the Gauss-Newton method with approximate
inference can be cast as inference in a linear or Gaussian process model. We find that the Gauss-
Newton method turns the original model locally into a linear or Gaussian process model. The
Laplace and Gaussian variational approximation can subsequently provide a posterior approx-
imation to these simplified models. This new disentangled understanding of recent Bayesian
deep learning algorithms also leads to new methods: first, the connection to Gaussian processes
enables new function-space inference algorithms. Second, we present a marginal likelihood
approximation of the underlying probabilistic model to tune neural network hyperparameters.
Finally, the identified underlying models lead to different methods to compute predictive distri-
butions. In fact, we find that these prediction methods for Bayesian neural networks often work
better than the default choice and solve a common issue with the Laplace approximation.



Mathematical Notation and
Abbreviations

Symbol Explanation

R,R; set of real and positive real numbers

x scalar variable

v vector variable with scalar entries v;

M matrix variable with scalar entries M;;

T tensor variable with scalar entries T,

f(x;0) function mapping x to some output parameterized by 6, for example a neural network
Vof(0) the gradient with individual entries [V f(0)], = %é?

V2o [(0) the Hessian with entries [V3, /()] = gZ{ {ggj

Vof(6y) gradient evaluated at 6 = 6., same applies for Hessian

() scalar, vector, or Frobenius inner product depending on the context
N(p,X%) multivariate normal distribution with mean p and covariance X
N(O;p, X) 0 is distributed according to N (i, X).

Abbreviation Meaning

GGN, GN (generalized) Gauss-Newton

GVA Gaussian variational approximation

GP Gaussian process

GLM generalized linear model

GGPM generalized Gaussian process model

BLR Bayesian linear regression (model)

VOGGN variational online generalized Gauss-Newton

OGGN online generalized Gauss-Newton

LGVA linearized Gaussian variational approximation
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Chapter 1

Introduction

The field of machine learning deals with algorithms that teach computers to make predictions
or take actions in novel scenarios based on past experience. In the setting of supervised learning,
the past experience consists of observed data points comprising inputs and labels. For example,
the input could be an image of an object and the label its name. A machine learning algorithm
can teach, or train, the computer to predict the label of unseen images using a learned model.
In the probabilistic machine learning framework, we model uncertainties about our choice of
model, i.e., we don’t restrict ourselves to a single bet. Therefore, inference in this framework is
about identifying a distribution over models that explain the past experience well and there-
fore generalize to future observations. Having a distribution instead of a single model enables
uncertainty quantification and model comparison.

Apart from the data, a probabilistic machine learning algorithm comprises two key compo-
nents: a probabilistic model and an inference algorithm. In this work, we focus on probabilistic
models of neural networks and scalable inference algorithms for such models. We disentangle
common inference algorithms that combine approximate inference with the generalized Gauss-
Newton (GGN) optimization method and investigate how both affect the underlying probabilistic
model. We show that, locally, these techniques simplify the probabilistic model drastically. Inves-
tigating these simplified underlying models helps to improve our understanding of Bayesian
deep learning. We further exploit this understanding to enhance Bayesian deep learning. In
fact, the findings presented here lead to more accurate predictions of neural network mod-
els inferred with approximate inference methods. The disentanglement of the Gauss-Newton
method and approximate inference further enables novel ways to compute the posterior and
posterior predictive of a neural network in the function-space and gives rise to a marginal like-
lihood approximation. Further, we identify a new variational inference algorithm and provide
experimental support for our theoretical results and hypotheses.



1.1 Probabilistic Models and Inference

More formally, the combination of data and a corresponding probabilistic model of the data can
be described as follows. In the supervised setting, we are given a dataset D = {(x;, y;)})*., of N
independent and identically distributed input «; and label y; pairs. For now, let both input and
output be some abstract quantities. In the previous example, x; corresponds to an image while
y; denotes the corresponding object name. A probabilistic model consists of prior and likelihood.
In the case of probabilistic neural networks, we usually pose a prior over the parameters 0, i.e.,
p(0). The likelihood of observing a label y for a given parameter 6 and input « can be written as
p(y|6@, x). Since all data points are i.i.d., we write p(D|@) for the product of all likelihoods over the
entire dataset.

Turning to the problem of learning, we deal with the maximum a posteriori (MAP) estimate
and Bayesian inference. In Bayesian inference, we compute the posterior distribution p(6|D)
over the parameter using Bayes rule

(o)D) = 221w _ p(D.6) (L1

/' p(DI0)p(6)dd  p(D)
where the normalization constant in the denominator is called the marginal likelihood. In
contrast to Bayesian inference, MAP estimation solely captures the mode, i.e., the most proba-
ble parameter, of the posterior. Ignoring the normalization constant, this can be achieved by
maximizing the joint distribution:

Onvap = arg max p(D, 0). (1.2)
[

MAP estimation is typically much easier and computationally convenient while Bayesian infer-
ence is in many cases intractable due to the integration. One could distinguish the two types of
inference as follows: Bayesian inference is learning by integration while MAP estimation is learn-
ing by optimization. Computationally, optimization is much more convenient than integration.

Ignoring the computational burden, we would often prefer Bayesian inference since the pos-
terior distribution captures more information than the MAP estimate. While the MAP estimate
provides only local information at @yap, the posterior distribution carries global information
due to the integration over the parameter space captured in the marginal likelihood p(D). In the
case of linear regression, it is clear that Bayesian inference has advantages over the MAP estimate:
we can quantify uncertainty of our predictions and compare the marginal likelihood between
models to obtain the one explaining the data best. Nonetheless, computational feasibility is
a key requirement of machine learning algorithms. Therefore, the MAP estimator is often the
standard choice as it provides good results at fraction of the cost and effort.



1.2 Bayesian Deep Learning

Bayesian neural networks are probabilistic models where the likelihood is parameterized by a
neural network and the prior is a distribution over the neural network parameters. Bayesian
inference in these models is particularly challenging and therefore MAP estimation has played
the major role in the past successes of deep learning [8, 24]. In contrast, the alternative strand of
research termed Bayesian deep learning deals with approximate Bayesian inference for proba-
bilistic neural network models. Instead of obtaining an exact posterior of the Bayesian inference
problem, an approximation to the posterior is constructed [4, 19, 50, 55]. The key aspect of
Bayesian deep learning is to maintain computational and performance advantages of deep
learning while providing parameter uncertainties that enable predictive uncertainties.

Bayesian deep learning algorithms rely on approximate inference techniques as well as
scalable optimization algorithms. The interplay of both enables to approximate the posterior
distribution efficiently. In particular, the combination of the generalized Gauss-Newton method
from the optimization literature and Gaussian posterior approximations has recently made
Bayesian deep learning competitive with traditional deep learning and enabled new applications
based on uncertainty [19, 38, 44, 55]. However, it is unclear how the combination of these approx-
imations impacts the underlying inference problem. In this work, we address this problem by
disentangling algorithms that make use of Gaussian posterior approximations and the general-
ized Gauss-Newton method in Bayesian deep learning. Decoupling the individual methods and
analyzing them individually can potentially allow to understand the algorithms better, improve
them, and fix existing pathologies.

1.3 Outline of the Thesis

In chapter 2, the necessary background on probabilistic neural network models, approximate
inference, and the generalized Gauss-Newton method is introduced. In chapter 3, we disentangle
the combination of the Laplace approximation with the generalized Gauss-Newton method for
optimization. This allows to understand approximate inference for neural networks with linear
and Gaussian process models. Further, we introduce new methods to compute the posterior pre-
dictive and marginal likelihood approximation of neural network models. Chapter 4 introduces
a new variational inference algorithm and, in the same spirit as Chapter 3, describes approxi-
mate inference for neural networks via simpler linear and Gaussian process models. Chapter 5
provides experiments that explain and complement the theoretical connections: we show how
to tune hyperparameters using the marginal likelihood and that the posterior predictive is in
fact greatly influenced by the application of the Gauss-Newton method. The prediction methods
introduced here fix a common problem with the Laplace approximation. The kernel of the
identified Gaussian process formulation is further used to explain neural network predictions.
Lastly, we discuss related and future work and conclude the thesis in Chapter 6.



Chapter 2

Background

In this chapter, we briefly introduce the necessary concepts and theory to follow the rest of this
work. We first introduce probabilistic neural networks as the underlying models that we want
to infer. In particular, we introduce likelihoods for supervised learning problems and discuss
the choice of prior. Bayesian deep learning combines approximate inference methods and
optimization algorithms, both of which we introduce in the end of this chapter. On the inference
side, we introduce the Laplace and Gaussian variational approximation and relate them to each
other. Lastly, we introduce the generalized Gauss-Newton approximation to the Hessian from the
optimization literature. This enables scalable approximate inference.

Formally, we denote a neural network as f(x; 0) : RP x R” — R that maps an input « € R”
to output f € R with parameters 8 ¢ R”. We do not restrict ourselves to any form of neural
network. In fact, any parametric function that is differentiable in 8 at least once can be used. In
some cases, we have a scalar output, i.e., f(x;0) = f € R.

The dataset in a supervised learning scenario is given as pairs of inputs z; € R” and labels
y; € RE. Asintroduced in Chapter 1, the entire dataset of size N is then givenby D = {(z;, y;)} Y.
We assume that all data points are drawn independently and from the same distribution. There-
fore, we have the following likelihood in a neural network model:

N
p(D|0) = Hp(yi|f($i;9))- 2.1)
i=1

In deep learning, we obtain a MAP estimate by optimizing the corresponding objective in
Equation 1.2. For computational reasons, we maximize the log joint distribution which leads to
the more convenient objective

N
Omap = arggnaxz log p(yi| f(:;0)) + log p(8), (2.2)

=1
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x—| f(x;0)— g~ (f) |= E[Y]

NN inverse link

Figure 2.1 — Illustration of the composition of neural network and inverse link function. The
inverse link function gives the mean of the modelled response variable Y.

which is also known as the empirical risk minimization objective. In the ERM setting, the like-
lihood acts as a loss per data point and the prior can be understood as a regularizer. Next,
we specify a particular family of likelihoods that is sufficient for deep learning and possesses
useful theoretical properties. After that, we introduce approximate Bayesian inference and the
generalized Gauss-Newton method.

2.1 Probabilistic Neural Networks for Supervised Learning

We have introduced neural networks that map an input data point to an output value. A proba-
bilistic neural network model additionally consists of a likelihood and a prior. We introduce a
family of likelihoods, in particular, those of generalized linear models (GLMs), that give rise to
common losses used in deep learning. These exponential family likelihoods possess simplifying
theoretical properties that make later results more interpretable. In the end of the section, we
discuss the choice of prior.

Generalized linear model likelihoods specify a distribution over the output labels. In particu-
lar, we model a response random variable Y or vector Y for a given input and neural network
parameter. GLM likelihoods conveniently express the mean of the response via an invertible link
function g(-), i.e., E[Y] = g~ ! (f). Further, the derivatives of the log-likelihood with respect to
the function f are directly related to the moments of Y. This property makes the theoretical
developments more intuitive and insightful. The likelihoods of generalized linear models are
restricted to exponential family distributions [33]. Every exponential family can be written in the
following natural form as

p(ylf) = h(y)exp {(T'(y), ) — A()}, (2.3)

where h(y) is the base measure, 7'(y) the sufficient statistics, A(f) the log-cumulant, and f
the natural parameter. We restrict ourselves to forms where 7'(-) is the identity, i.e., T'(y) = y.
Therefore, we have

p(ylf) = h(y)exp {(y, f) — A(f)}. (2.4)

The derivative of the log likelihood with respect to the natural parameter f is particularly
convenient. The first derivative forms a residual between the observed label and the mean of the
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[\

Distribution

o E[Y]=g"'(f) (Y, f) VY] A(f)
Gaussian a2 f o 2(y—f) o2 o2
Multivariate Gaussian ¥ f SHy—f) = !
Bernoulli 1 7 =o(f) y—o(f) o)1 —a(f)) VI[Y]
Categorical 1 softmax(f) =p(f) vy —p(f) diag(p) —pp' VI[Y]
Poisson 1 exp(f) y—exp(f) exp(f) VY]

Table 2.1 — Most common likelihoods of generalized linear models. For each distribution, we
list the corresponding dispersion parameter, the mean response, the residual, the variance of
the response, and the Hessian. In the context of deep learning, the Bernoulli and categorical
likelihoods are common due to their application to classification problems.

response variable and therefore specifies the link function. The second derivative directly relates
to the variance of the modelled response variable. Further, we identify the mean of the response
variable and therefore the inverse link function as the derivative of the log cumulant A(f). The
following Lemma formalizes these properties.

Lemma 2.1. Letp(y|f) be an exponential family distribution of the form in Equation 2.4 and let
Y denote the corresponding random variable. The first and second derivative of the log likelihood
take the simple form

Velogpylf) ==y - ViA(f) =y —-E[Y]=y—g '(f) = 7(y.f), (2.5)
V2 logp(ylf) = ~V3,A(f) = —V[¥] = —A(f), (2.6)

where we defined the residual r(y, f) € RX and second derivative, or Hessian, of the negative
log likelihood A(f) € RE*K. We have thus identified the inverse link that gives the mean of
the response variable as the first derivative of the log cumulant. In the case of an overdispersed
exponential family [33], the variance of the response variable is further scaled by the dispersion
parameter o while the derivatives are divided by it. We have this case, for example, in a Gaussian
likelihood (see Table 2.1).

A proof of the Lemma can be found in Appendix A. In Table 2.1, we list the most notable
examples of likelihoods. In this work, we mostly deal with the Gaussian univariate and Bernoulli
likelihood. Both naturally extend to their multivariate counter-parts, the multivariate Gaussian
and categorical distribution. In the empirical risk minimization perspective, a Gaussian like-
lihood yields a least-squares loss used for regression problems. The Bernoulli and categorical
distributions give rise to the commonly used cross-entropy loss for classification [12].

As prior we choose a multivariate Gaussian in line with most works on Bayesian neural
networks [4, 19, 55]. In the MAP estimation framework, a Gaussian prior corresponds to /5
regularization commonly known as weight decay in deep learning [2, 12, 33]. We therefore have

6 ~ p(0) = N (po, o) , (2.7)
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where 1o € R is the mean and 3, € R”*? the covariance. For neural networks, the mean is
typically chosen to be zero and the covariance is either diagonal, i.e., 0'3 € Ri, or scalar 0(2) e R,
That is because it is nontrivial to specify a prior over the parameters of a neural network and the
Gaussian is a comparably agnostic default choice [27, 34, 36]. It is important to note that the
prior should be understood as a distribution in Bayesian inference and as a regularizer in MAP
estimation. In chapter 3, we pick up on this distinction in the context of approximate Bayesian
inference.

2.2 Approximate Bayesian Inference

Exact Bayesian inference in a probabilistic neural network model is typically intractable. There-
fore, we need to resort to approximate inference methods that provide scalable and computable
alternatives to the marginal likelihood. In the context of networks, the most scalable and practical
techniques are variants of the Laplace [10, 27, 44] and Gaussian variational (GVA) approxima-
tion [4, 13, 19, 55]. In this work, we therefore focus on these two approximations. Both, the
Laplace approximation and the GVA turn the problem of integration into a problem of optimiza-
tion followed by a simple closed-form integration. Other approximate inference methods such
as Markov chain Monte Carlo [35, 36] or expectation and belief propagation [31, 39] are typically
not as scalable and are therefore rarely used for neural networks.

The Laplace and Gaussian variational approximation both construct a Gaussian approxima-
tion to the true posterior distribution. The Laplace uses a second-order approximation of the
log joint distribution to approximate the marginal likelihood. In contrast, the GVA maximizes
the variational lower bound to the marginal likelihood. Both methods give rise to a posterior
approximation ¢(6) and we have

q(8) =N (6; u, %) ~ p(6|D), (2.8)

where € R” and X € RP*P are the free parameters. Typically, the variational approximation is
preferred because it can capture the shape of the posterior better [2, 33]. After introducing both
methods, we briefly show how they are related.

The Laplace Approximation

The Laplace approximation is a heuristic that fits a Gaussian distribution locally at the MAP
estimate (Equation 2.2). Therefore, the Laplace approximation comprises two steps: first, we
obtain the MAP estimate Oyap using an optimization method and then we approximate the log
joint distribution to the second-order using a Taylor expansion. The second-order approxima-
tion allows us to compute the marginal likelihood in closed form. The Laplace approximation
therefore provides an approximation to the posterior and the marginal likelihood.

12



Since the gradient at the MAP is zero, i.e. Vglog p(D, 6map) = 0, the second-order Taylor
approximation at this point is simple. We have

1
log p(D, ) =~ log p(D, Omap) + B (60— GMAP)T Vgg log p(D, Oymap) (0 — Oyap) - (2.9)

Then, computing the marginal likelihood of the approximated model has a closed-form solution.
Using the normalization properties of a multivariate normal distribution, we obtain the Laplace
approximation to the marginal likelihood

p(D) ~ p(D, Opiap) (27) 2 det(—V3, log p(D, Ovap)) 2. (2.10)

Exponentiating the approximation to the joint distribution in Equation 2.9 and dividing it by
the marginal likelihood, we identify the Laplace approximation as a Gaussian distribution with
mean and covariance given by

pw=0wap and X = [—Vaglogp(D,Ovap) " . (2.11)

The Laplace approximation is a practical method for approximate Bayesian inference because
we only need to find a MAP estimate and compute the Hessian of the log joint distribution at that
estimate. Deep learning optimizers provide effective means to obtain MAP estimates. For large
networks, however, computing the Hessian for a neural network model is permissively complex
in terms of storage and computation. Further, it might even give undesirable results: the Hessian
at the MAP we obtain is not necessarily a positive definite matrix and might therefore not be
invertible [45, 46]. Typically, this problem is tackled by optimization methods that guarantee a
positive semi-definite Hessian approximation. For example, Gauss-Newton methods [14, 19, 44]
ensure an invertible Hessian approximation. In section 2.3, we introduce the generalized Gauss-
Newton method that is commonly employed.

The Gaussian Variational Approximation

In variational inference, we minimize the Kullback-Leibler (KL) divergence of the true posterior
p(0|D) from an approximation distribution ¢(0) [3, 16]. Let P be a family of distributions that we
choose as our posterior approximating family. Then, the variational approximation is given by
the following optimization problem:

= arg min — arg min o _4(8)p(D)
0= e D @)1 sep / €9)] g<p(D\9)p(9)>d0 2.12)

= arg min/q(@) log (p(ql(??é)> dO + log p(D).

qeP

If the approximating family P contains the true posterior distribution, the variational approxi-
mation is exact and naturally incurs no divergence. Since the KL divergence is non-negative, the

13



first term in Equation 2.12 stands in special relation to the log marginal likelihood giving rise to

the evidence lower bound (ELBO):

p(D,6)
q(8)

Maximizing the ELBO is hence equivalent to minimizing the KL divergence of the true posterior
from the approximating distribution.

log p(D) > E, {log ] = ELBO(q). (2.13)

The Gaussian variational approximation (GVA) is a particular instance of variational inference
where P is the family of multivariate Gaussian distributions. In particular, the approximating
distribution ¢(8) is restricted to the Gaussian distribution A/(8; u, X) as stated in Equation 2.8.
Therefore, the problem of optimizing over a family of distributions turns into optimizing the
parameters of a distribution of fixed form. The ELBO for a probabilistic neural network model
with Gaussian prior (section 2.1) can therefore be expressed in terms of the parameters u, 3.
Further, it is convenient to split the ELBO into an expected log likelihood and a KL divergence
term:

ELBO(u, 2) = Epr(,3) log p(D|0)] — D, [N (1, Z) IV (o, Zo)] - (2.14)

The KL divergence has a closed form solution since both prior and approximating distribution are
Gaussian. This form of the ELBO provides the basis of variational inference in deep learning [4,
19, 55]. The expected log likelihood term of the ELBO seems to be complicated to optimize.
However, a neat relation between derivatives with respect to the parameters (i, ¥) and realized
samples 0, of the GVA exists [37] and is due to Bonnet and Price [5, 41]. We can simplify the
derivative with respect to parameters p and X of the expected log likelihood as follows:

ViuEn () [logp(D]0)] = Exr,z) [Ve log p(D]6)] (2.15)

1
VsEn(u,x) llogp(D]6)] = S BN 2) (V5o logp(D|6)] (2.16)

Therefore, taking gradients with respect to the variational parameters can be as simple as sam-
pling and taking the gradient with respect to individual samples. Further, these equations make
clear that the GVA is also limited to a second-order approximation. However, the GVA maintains
a global view of the loss due to the expectation and is therefore more powerful than the Laplace
approximation.

Relation between Laplace and Variational Approximation

Following Opper and Archambeau [37], we compare the optimality criteria of the Laplace and
Gaussian variational approximation. For the Laplace approximation, we have the conditions

0=Vglogp(D,u) and X~'= -Vislogp(D,p). (2.17)

14



For the Gaussian variational approximation, we can devise very similar conditions. First, we
obtain the stationarity conditions by differentiating with respect to the variational parameters in
Equation 2.14. The stationarity condition for the mean is simple and for the inverse covariance
matrix, we have

VsELBO(11,X) = 0 = =71 = 2VsEyr(, 5 [ log p(D. )] (2.18)

Now, we apply equalities of Equation 2.15 and Equation 2.16 to both stationarity conditions.
Note that these equalities hold not only for the expectation over a likelihood but also the joint
distribution [37]. We obtain the GVA stationarity conditions

0=En(us) [Volog(D,0)] and 7'=Ey(.x)[-Velogp(D,0)]. (2.19)

The relation between Equation 2.17 and Equation 2.19 highlights the difference between
both approximations: while the Laplace approximation is only defined locally at the MAP, the
variational approximation holds globally [37]. The relation suggests that the difference lies in
sampling parameters versus fixed parameters. Specifically in practice, the variational inference
stationarity in Equation 2.19 does not hold exactly but for S Monte Carlo samples from the

variational approximation, i.e., V), ..., 0% ~ N (u, X):
1< 1<
_ = (s) -1 _ - 2 (s
0= S;:lvelog(D,H ) and X! = 5;:1 V2glogp(D,0®). (2.20)

The main insight of this section is that both approximations limit themselves to the first two
moments of the negative log joint distribution. The variational approximation provides a more
global view of the joint distribution by stochasticity in the parameters.

2.3 The Generalized Gauss-Newton Method

For approximate Bayesian inference in neural networks, second-order derivatives of the log
likelihood are typically required. In particular, this is the case for the Laplace and Gaussian
variational approximations. As mentioned in section 2.2 however, the Hessian is permissively
expensive to compute and might even be singular or undefined. Therefore, the current state-
of-the-art Bayesian deep learning algorithms rely on approximate second-order optimiza-
tion methods [19, 38, 55]. These methods are both scalable and guarantee a positive semi-
definite approximation to the Hessian [6, 29, 47]. In particular, the generalized Gauss-Newton
approximation (GGN) is used extensively for the Laplace and Gaussian variational approxima-
tion [10, 19, 30, 44, 55]. The GGN is a positive semi-definite approximation to the Hessian. In
practice, the diagonal [13, 19] or a Kronecker factorization [44, 55] of the GGN is often used. Here,
we work with a full GGN approximation to draw conclusions for the other special cases.
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The generalized Gauss-Newton method allows us to compute an approximation to the second
derivative of the log-likelihood. The derivative of the log prior in the Laplace approximation
and the KL divergence from the prior in the GVA have a closed form and do not require an
approximation. The log likelihood takes the following form in the case of probabilistic neural
network models. According to Equation 2.1, we have

N
logp(D|0) = > log p(yi| f (w3 0)), (2.21)

=1

where the likelihood is a generalized linear model likelihood (section 2.1). To take the first and
second derivative with respect to the parameter, we apply the chain rule. Figure 2.1 illustrates
that we can first differentiate with respect to f and then with respect to the parameters. We
define the Jacobian matrix J(x;0) € RE*P of f(x; ) with respect to the parameters, and the
Hessian tensor H(x; ) € REXPXF of second derivatives as

_ 0fi(x;0)
T 09,

0?fi(z; 0)

2.22
00,00, (2.22)

[J (2; 0)],; and  [H(z;0)];;, =
where we assumed the function is twice differentiable for now. Using the properties of the first
and second derivative of the GLM log likelihoods in Lemma 2.1 and Table 2.1, we obtain the
gradient

Vologp(y|f(x;6)) = J(:0)" Vslogp(y|f) = J(2:0) r(y, f). (2.23)

Similarly, the Hessian of the log likelihood can be computed using the chain rule and gives

Voo logp(y| f(x;0)) = H(z;8) Vo logp(y|f) + J(x;0) V3 log p(y| £)J (x;0)

The first derivative is tractable and efficiently implemented in neural networks using back-
propagation [12]. The second derivative with respect to the parameters is problematic because
we need to differentiate the neural network with respect to its large amount of parameters
twice. In fact, for some network architectures, for example, ReLU activation functions, the second
derivative is not defined everywhere [55]. The generalized Gauss-Newton approximation to the
Hessian simply removes the term that is intractable and is given by

Voo logp(y|f(w;0)) ~ —J (z; 0)A(f)J (x;6) . (2.25)

This makes the Hessian tractable since we only need first order derivatives with respect to
the neural network. Further, it is always positive semi-definite and does not even require the
existence of the neural network Hessian.

Assuming the neural network Hessian H(x; 0) exists, the GGN approximation is exact in two
cases: either, all residuals are zero, i.e., V(x,y) € D : r(y, f(x;0)) = 0, or the neural network
Hessian H(x; 0) is zero. Although a neural network can potentially achieve zero residuals, it is
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both undesirable as it indicates overfitting and impractical as this condition does not hold at ini-
tialization or during training.! The neural network Hessian H(x; ) can only be zero everywhere
if the neural network is linear. Therefore, an alternative derivation of the GGN approximation
to the Hessian starts from linearization of the neural network [6, 29]. We define the first order
Taylor approximation of the neural network around the expansion point 6, as

Fion (@:0) = f (2:60.) + J (x;6.)(6 — 6,), (2.26)
which gives us a linear function in the parameters 6 but not in the input . To compute the
Hessian at 8., we therefore linearize the network at this parameter and then compute the Hessian.
This way, we recover the GGN approximation to the Hessian. This derivation and reasoning for
the GGN allows to understand its role in approximate inference better.

!For the Bernoulli and categorical likelihood, the residual can theoretically only tend towards zero.
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Chapter 3

From Neural Network to Gaussian
Process with Laplace and Gauss-Newton

The Laplace approximation is often used as a baseline for Bayesian neural networks and in
some cases achieves state of the art results [43, 44, 49]. For neural networks, the diagonal or a
Kronecker-factored generalized Gauss-Newton approximation to the Hessian is often used [44].
Here, we will work with the full GGN approximation to the Hessian [10]. We call the combination
of Laplace and GGN the Laplace-GGN approximation [20]. In this chapter, we disentangle the
Laplace-GGN approximation. In particular, we first apply the generalized Gauss-Newton method
and then make use of the Laplace approximation. Going forward, we analyze the individual steps
of the Laplace-GGN and their impact on the underlying probabilistic model. Interestingly, the
underlying probabilistic model can be cast as a Gaussian process model and enables function-
space inference for neural networks.

First, we apply the generalized Gauss-Newton method to the neural network model. This
gives rise to a generalized linear model due to the linearizing property of the GGN. Equivalently,
we can specify this model as a Gaussian process (GP) model. Subsequently, we apply the Laplace
approximation to either of these models. We identify two simple models, the Bayesian linear and
the Gaussian process regression model. Inferring these models is then equivalent to the Laplace-
GGN approximation and facilitates a better understanding of the combination of Laplace and
GGN approximation. Figure 3.1 illustrates the steps and relationships established in this chapter.

After analyzing the Laplace and GGN approximation, we compute the posterior, posterior
predictive, and marginal likelihood. Due to the equivalence to Gaussian process inference,
there are two ways for each of these quantities. This can enable computational advantages in
some cases, similar to the kernel trick. The Gaussian process viewpoint further enables model
inspection and interpretability as we demonstrate in chapter 5.
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! I
Laplace .
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Figure 3.1 — Illustration of approximate inference with the Laplace-GGN method. We start
with Bayesian neural network inference and, by applying the GGN and Laplace approximation,
ultimately infer a Bayesian linear regression, or equivalently, GP regression model. As an inter-
mediate step, the Bayesian neural network is turned into a generalized linear model due to the
GGN. p(0|D) is the true posterior of the GLM and p5(0|D) is the true posterior of the Bayesian
linear regression model which is equal to the Laplace-GGN approximation.

3.1 From Neural Network to Generalized Linear Model

We start with a probabilistic neural network model as specified in chapter 2. During optimization
of the MAP objective, we have the iterate 6.. Typically, 0, is an estimate of the MAP but for our
development this is not necessary. The generalized Gauss-Newton approximation performs a
linearization around the current parameter. We recall Equation 2.26 from chapter 2:

for(a:6) = f(a;6.) + J (20.)(0 — 6.). (3.1)

The linearization above changes our model locally. We call p(8|D) the posterior of a generalized
linear model. Replacing the neural network f(x; 0) by its linearized version in the probabilistic

model, we then have
N

p(61D) o< p(6) | [ p(wil £ (i 6)), (3.2)
i=1

which is a generalized linear model (GLM) since fl?r;(m; 0) is linear in the parameter 6. The
Jacobian can therefore be understood as a local feature map of the inputs. Equivalently, we can
therefore transform this inference problem from the weight-space to the function-space [42]. We
obtain a Gaussian process prior by taking the expectation of the linearized neural network under
the parametric prior p(6) = N (po, Xo). The mean and covariance function of the Gaussian
process prior are given by

m(x) = Eye) | £ (2:0)| = £2: @: o). (3.3)
K(z,2') = Covyp, [ £ (:0), £2: (/5 0)] = J(x;6.,) S0 (2;6,), (3.4)

which gives rise to the Gaussian process prior in common notation [42] as

fop(x) ~ GP(m(x), k(x, x')). (3.5)
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We define the posterior Gaussian process distribution by p( fgp| D) in line with the corresponding
GLM. We therefore have the following generalized Gaussian process model (GGPM) as termed

by Chan and Dong [7]:
N

#(fap|D) o p(fep) [ [ p(wil fop)- (3.6)
=1
The GLM and the GP model have the same posterior predictive since they specify the same prior
over functions [42].

So far, we have applied the GGN optimization method but no particular inference algorithm.
Nonetheless, the underlying probabilistic neural network models has turned into a generalized
linear model. The Jacobian, which constitutes the features of the GLM, remains fixed after this
transformation. The second step is now to apply the Laplace approximation to the GLM. In
this context, the Laplace approximation can therefore not really be understood as approximate
inference of a neural network model. In the next sections, we show that the Laplace approxima-
tion to the GLM or GGPM is equivalent to solving a Bayesian linear regression or GP regression
model, respectively. The exact posterior of these models then corresponds to the Laplace-GGN
approximation.

3.2 From Generalized Linear Model to Bayesian Linear Regression

The Laplace-GGN approximation is a Laplace approximation to the local generalized linear
model in Equation 3.2. In this section, we show that the Laplace approximation to this gener-
alized linear model can be understood as exact inference in a Bayesian linear regression (BLR)
model. The form of the Bayesian linear regression model is very intuitive and improves our under-
standing of the Laplace-GGN approximation. To keep notation simple, we abbreviate all relevant
quantities as follows: we write f(x) := f(x;0.), g () := g~ (f(x:;0,)), J(z) := J(=; 0.), and
A(z) .= A(f(x;0.)). We obtain the following result:

Theorem 3.1. The Laplace-GGN approximation to a Bayesian neural network model, i.e., apply-
ing the Laplace approximation to the generalized linear model in Equation 3.2, is equivalent to
the exact posterior of a Bayesian linear regression model. In particular, we obtain for the Laplace
approximation that

N

q(6) = p(0ID) o p(6) [ [N (wilg ™ (a:) + A(w:) T () (6 — 6.) , Alws)) 3.7
i=1

where the original likelihood of the Bayesian NN model or GLM is replaced by a Gaussian likeli-
hood. The Gaussian likelihood matches its first two moments at 0, for likelihoods with dispersion
parameter o = 1, since A(x;) = V[Y;] and the inverse link maps to the mean. For the overdis-
persed Gaussian likelihood, this connection is not useful since the GLM is already a Bayesian
linear regression model.
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Proof. We apply the Laplace approximation to the model with the linearized neural network
in Equation 3.2. We handle the log likelihood and log prior individually: Since the log density
of Gaussian is of second order, the prior remains unchanged. We work with a single summand
of the log likelihood and use the representative data pair (x, y) and drop the dependency on
x in the notation to save space, i.e., for any operator A(x) we write only A. The residual vector
r(y, f(x; 0,)) is further abbreviated as r. Therefore, the second-order Taylor approximation to
the log likelihood around 6. required for the Laplace approximation can be written as

1
log p(y| £ (% 0)) ~ log p(y| £ (x;0.)) +7J (6 — 0,) — 3 0-06.)" JTAT(0-0,)
1

=logp(y|f) = (g7 () —u) (J (0~ 0.) — 5 (J (6 - 0.))  A(J(0-6.)

1, _ T Aol —
=logp(ylf) +5 (97 () —y) A (a7(f)—v)
1, _ T a1/ —

— 5@ (N +AT(O-6.)—y) A (g7 (FH)+AT(0-06.)-y),
where we have expanded the residual » and completed the square (Appendix B). Exponentiating
the term and removing the parts independent of the parameter 8, we obtain the desired result.
For the Laplace approximation to the marginal likelihood, the remaining constants will be
important (cf. section 3.6). O

The result makes two interesting things apparent: first, the term A J is equal to the Jacobian
of g '(f(x; 0)) evaluated at 6,. This follows from the GLM likelihoods since the derivative of
the inverse link is A and therefore we obtain the Jacobian by the chain-rule. This indicates
that Laplace-GGN implicitly performs a first-order Taylor approximation after the inverse link
function. Second, when using the Laplace approximation to a linear model, we essentially turn
the model into a solvable Bayesian linear regression model. This Bayesian linear regression
model matches the moments of the original likelihood at the expansion point ... In the case
of maximum likelihood estimation, Wedderburn [51] has shown something similar: using the
generalized Gauss-Newton for generalized linear models requires iterative solutions of least-
squares problems that are weighted by the response variances.

3.3 From Generalized Gaussian Process to Gaussian Process Regres-
sion

We have explained how the generalized linear model due to the GGN (Equation 3.2) can be cast
as a generalized Gaussian process model (Equation 3.6). Here, we will show that the Laplace
approximation to this model yields a Gaussian process regression model. Essentially, this allows
us to do the Laplace-GGN in the function-space instead of the parameter-space. Therefore, we
can trade off computational costs between dimensionality P and dataset size N [42]. This holds
for the posterior, posterior predictive, and the marginal likelihood. Therefore, the Laplace-GGN
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is the first method that uses Gaussian process inference for finite width neural networks [17, 25].
The relationship to exact Gaussian process regression presented in this section allows to use
efficient standard routines developed for these models [42].

We denote the Laplace-GGN posterior approximation in function-space by ¢(fgp). In the
following we show that it can be simply computed by exact Gaussian process inference. Ras-
mussen [42] derives the Laplace approximation to a Gaussian process model for classification
likelihoods. We denote the neural network linearized after the link function by

g7l (2:;0) = g7 (f(2:6.)) + A(m)J () (6 — 6,). (3.8)

Using this notation, we can relate the Laplace approximation to the generalized Gaussian pro-
cess:

Theorem 3.2. We define the mean and covariance function ofa GP prior fop ~ GP(m(z), &(z, x'))
m(x) = g (T o) and  k(z, @) = A(x)J(x) " SoJ (z')Az'), (3.9)

which gives rise to the prior p(fp). Then, the Laplace approximation to the generalized Gaussian
process model in Equation 3.6 at f (x; 0..) is equal to the posterior of the following Gaussian process

regression model:
N

q(fep) = D(fap|D) < p(fep) [ [N (wil for, A=) (3.10)
=1
This model complements the Bayesian linear regression model in Theorem 3.1 and has the same
marginal likelihood and posterior predictive [42].

Proof. In correspondence with section 3.2, we conduct a Laplace approximation at f, := f(x;0,).
Again, the prior is Gaussian and therefore remains unchanged. For the likelihood of an arbitrary
label y, we have

—~

los p(y fow) ~ ogp(ylf.) — (97 () ~9) (for — £2) — 5 (Faw — )T A — £
@' (f)—y) A g (f)—v)

(97 ' (f) + Afep — Afe —y)A g ' (fi) + Afep — Af. — y),

= log p(y|f«) +

N — N =

where we expanded around f, and completed the square. The first two summands of the last
term are independent of fgp and the last term yields a Gaussian likelihood as in the proof of
Theorem 3.1. This allows to write a Gaussian likelihood. Again, the remaining constants are
necessary for the computation of the marginal likelihood. O

The kernel in this model resembles the neural tangent kernel which arises when analyzing
neural network training in function space [17]. To see this, we can reparameterize the GP as
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A(x) fep and obtain the kernel &(x, ') = J(x) " $oJ («'). With a spherical prior covariance X,
we recover the kernel of Jacot et al. [17]. In contrast, we deal with finite width networks in the
Bayesian setting and can recover similar properties using the practical Laplace-GGN method
presented here. On the practical side, Laplace-GGN in function-space enables inference corre-
sponding to a full posterior covariance for neural networks with huge amounts of parameters
but few data. In particular, Laplace-GGN in function-space has the computational complexity
O(N3K? + N PK) for inversion of the kernel and computation of the Jacobians. Potentially, one
can approximate this kernel by a low-rank structure, e.g., the Nystrém approximation [42], lead-
ing to novel approximate inference algorithms for neural networks. In contrast, the complexity
of the corresponding Bayesian linear regression inference is O(P3 + N PK). In the following, we
will derive the posterior, predictive, and marginal likelihood of both models.

3.4 Computing the Laplace-GGN Posterior Approximation

We compute the Laplace-GGN approximation to the posterior distribution of the neural network
model. To obtain the parameters of the Gaussian approximation ¢(8) = N (u, X), we make use
of Theorem 3.1. Bayesian linear regression models have a closed form solution [2, 33]. The mean
and covariance parameter of the Gaussian posterior p(8|D) are given by

N
> = (251 +3 J(mi)A(mi)J(mi)T) - (3.11)
=1
N
p=3(5" o+ Y @) (i — g7t (@) + T (@) A@) T (2)6.).  (3.12)

=1

The covariance is simply the inverse of the Hessian of the negative log joint distribution. At
first, the mean seems more involved. However, assuming a local minimum, i.e. >~ | J, (a;)(y; —
g: ' (zi)) — =;1(0. — o) = 0, we obtain have p = 6... In this case, we recover a Laplace approxi-
mation that is constructed at the MAP, which we did not need to assume.

Alternatively, we can use the posterior of the generalized Gaussian process and infer in
function space. Recall the kernel from the beginning of this chapter in Equation 3.4. Due to
the multiple outputs, our kernel maps to a matrix. The kernel K € RNE*XNK consists of N
(K x K) submatrices along both dimensions. The submatrix at the i-th position along the first
and j-th position along the second axis is given by k(x;, ;) € RE*X_ We further have the kernel
K., = x(x,,x,) for data point x, and the joint kernel with the training data K,,, € RE*VK The
block-diagonal matrix W € RVEXNEK jg defined by N (K x K) blocks where the i-th block is
the negative log likelihood Hessian A(x;). Assuming a stationary MAP estimate, we have the
following distribution on fgp due to the Laplace approximation:

Fop| D, ~ N (f(:c*; 0.), Koo — Kup (K + W)™ K;;) . (3.13)
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3.5 Posterior Predictive Distributions

This section manifests how the generalized Gauss-Newton method and approximate inference
change our underlying inference model. Due to the two steps depicted in Figure 3.16, we obtain
three different posterior predictive models. The original model is a probabilistic neural network
model. Due to the GGN, we obtain a generalized linear or Gaussian process model. Finally, the
Laplace approximation corresponds to exact inference in a Bayesian linear or Gaussian process
regression model. Subsequently, we specify all three (approximate) posterior predictive distribu-
tions. We predict the label y, of a new data point «, and therefore need to compute the predictive
distribution p(y.|D, x.). All models have the same (approximate) posterior distribution but the
posterior predictive is naturally different.

NN sampling: to make predictions with the neural network, we need to approximate the
posterior predictive integral by sampling. With S Monte Carlo samples 64, ...,05 ~ ¢(0), we
have

S
pwD.2) ~ [ oyl f(.:0) Z (5.l (2:0.). 3.14)

GLM sampling: to predict using the generalized linear or Gaussian process model, we also
need samples to approximate the posterior predictive integral unless we have a Gaussian likeli-
hood. Again using S samples, we have

S
ﬁ(y*u)vm*) %/p(y*|flin(m*; Z y*|f1m :1:*, )) (3-15)

BLR predictive: the Laplace-GGN leads to exact inference in a Bayesian linear regression
model. The posterior predictive is available in a closed form but the distribution does not match
the original likelihood. We have

P(ya|D, ) = / N (gt (2:0), Alaz.))q(0)d6

N <glgnl(a;*; 1), Az) T ()8 () T A(z) + A(m*)) :

(3.16)

At the MAP, the mean simply is the MAP prediction of the neural network with additional uncer-
tainty. In the case of a Gaussian likelihood, the last step is not needed. For the other likelihoods,
the Hessian A(x.) corresponds to the variance of the GLM response variable. For the BLR and
GLM sampling predictive, we can equivalently use the Gaussian process view under use of the
posterior Gaussian process introduced in the previous section.

Only the first posterior predictive approximation is used in practice [4, 19, 44, 55]. However
for a Bayesian neural network with scalar Gaussian likelihood, Foong et al. [9] have recently
shown empirically that the third version often works better. The development of this chapter
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theoretically underline this result and extends it to other likelihoods. Applying the generalized
Gauss-Newton approximation changes our underlying inference model to a generalized linear
model. Therefore, this is the model we should predict with when using the Laplace-GGN. The
closed form Bayesian linear regression version is the second choice since it maintains linearity.
However, the likelihood of the original model is replace by a Gaussian. In chapter 5, we support
this hypothesis experimentally and show that the first predictive can fail spectacularly.

3.6 Marginal Likelihood Approximation

In this section, we derive the Laplace-GGN marginal likelihood approximation. We can derive it
from the Laplace approximation to the marginal likelihood of the generalized linear or Gaussian
process model. Using the exact marginal likelihoods as given by the BLR and GP regression
models, we only have to derive a correction term. In the proofs of Theorem 3.1 and 3.2, the second-
order approximation to the likelihood is the same and we can use it to derive the following result:

Theorem 3.3. Let p(D) be the marginal likelihood of the Bayesian linear or Gaussian process re-
gression model (Theorem 3.1 and 3.2). Then, the Laplace approximation to the marginal likelihood
of the generalized linear model denoted by p(D) is given by

N
log (D) ~ log p(D) + Y. | log p(yil £ (:: 6.)) — log N (wilg ™ (£(@::0.)). A@:) . (8.17)

=1

For the Gaussian likelihood, this leads to p(D) while other likelihoods maintain a correction term.

Proof. The Laplace approximation to the generalized linear and GP model marginal likelihood
arises from a second-order approximation. We can simply start off from the proofs of Theorem 3.1
and 3.2. For the prior, a second order approximation of the log density is exact since it is a
Gaussian. For the likelihood, we obtain the following term for a single input-output pair:

1, _ T a1/ —
log p(y|f) ~logp(ylf.) + 5 (97 (f) —y) A (g7 (f) ~ v)
1, _ T a—1/ —
—5 @ (f)+AT(O-6.)—y) A (g (f)+AT(0-6.)—y).
Let us add and subtract the term 3 log ((27)* det A) to obtain a Gaussian log likelihood in the
second term. The second term becomes — log N (y|g 1 (f(x; 6.)), A(x)). The last term is also
properly normalized to a Gaussian. The first and second term are independent of the parameter 6
and give us the correction terms. The remaining term applied to the entire dataset and combined
with the prior gives us the BLR or GP regression models defined earlier. We denote the marginal
likelihood of these models as p(D). O

Having established this connection, we are only left with the computation of 5(D). For the
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term p(D), we have again two ways to compute it due to weight and function space equivalence.
Estimating p(D) using the Bayesian linear regression model of Theorem 3.1 is widely known and
there exist numerically robust implementations for it [2, 33]. We have

1 det X 1

N
logp(D) = D _log N (yilg,, ' (1)) — 5 log 5" — 5 (= o) B! (1 — po). (3.18)
=1

Alternatively, we can use the Gaussian process variant. The key difference lies in the computa-
tional complexity shifted into the number of samples N as opposed to the number of parameters
P. In contrast to the kernel for the generalized GP in section 3.5, we have the kernel of the GP
regression model: K € RNE*NK consists of N2 (K x K) submatrices. The submatrix at i-th
position along the first dimension and j-th position along the second axis is given by &(x;, ;)
defined in Theorem 3.2. W € RVEXNK jg 3 block-diagonal matrix of the N Hessians A (x;) for
i € [N]. Lastly, the mean function m € RV¥ is a concatenation of the individual mean functions
of the N data points and y a concatenation of the corresponding labels. Then, we have for the
marginal likelihood of the GP regression model

1 1 NK
log (D) = — (m — y) (K+A)"(m—y) - 5 det [K + A] — =~ log 27. (3.19)

With a single output model, we recover the form derived by Rasmussen [42, Sec. 2].

3.7 The Prior as Regularizer and Distribution

In recent discussions, the prior in Bayesian neural network models and its obscure meaning
have been criticized [11, 53]. Here, we discuss the role of the prior in a Bayesian deep learning
algorithm. In particular, we discuss the role of the prior in an approximate as opposed to exact
posterior.

This chapter shows that, in the case of the Laplace-GGN approximation, the prior acts in
form of a distribution in a GLM and as a regularizer in the MAP objective. The regularizer impacts
the learned feature map, i.e., Jacobian, as well as the linearization point that both give rise to
the GLM that we infer. The GLM with fixed feature map and a Gaussian prior is simple to infer
and has a unimodal posterior. While it might be complicated to pose a prior on neural network
parameters, the Laplace-GGN approximation simplifies the model to a GLM where a simple
Gaussian prior is very common and justified [33]. Therefore, it is not straightforward to criticize
the priors used in Bayesian deep learning since the prior impacts an approximate and not exact
posterior. For the Laplace-GGN, we rather have to ask if the MAP estimation and linearization at
the MAP is reasonable. The error of the linearization can be quantified while MAP estimation
forms the foundation of deep learning itself. If we find both to be reasonable, inference in a GLM
using the Laplace approximation is a minor remaining problem.
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Chapter 4

The Impact of the Generalized
Gauss-Newton in Variational Inference

The Gaussian variational approximation is the direct competitor of the Laplace approximation:
itis equally scalable and uses the same approximating family. The difference is that optimization
and approximate inference steps are not sequential but combined into one variational infer-
ence algorithm that maximizes the ELBO (Equation 2.13). Nonetheless, we can disentangle the
respective influence of the generalized Gauss-Newton method and approximate inference for
each step of such an algorithm. This understanding again suggests different posterior predictive
distributions, updates in function-space due to a Gaussian process formulation, and leads to
the identification of a new algorithm. To maximize the ELBO, we make use of natural gradient
variational inference (NGVI). NGVI uses the information geometry to improve convergence [1]
and is responsible for recent successes in the field of Bayesian deep learning [19, 38, 55]. Most
algorithms further rely on the generalized Gauss-Newton approximation. Zhang et al. [55] use
a Kronecker-factored approximation and Khan et al. [19] use a diagonal approximation to the
GGN. Here, we analyze the case of the full GGN approximation.

First, we specify the parameter updates of a natural gradient variational inference method
for the GVA [18, 19]. A short derivation of NGVI for the GVA can be found in Appendix C. We
introduce three algorithms derived from the NGVI update to a Gaussian posterior approximation.
Two of these algorithms, variational online generalized Gauss-Newton (VOGGN) and online
generalized Gauss-Newton (OGGN), have been introduced before [20]. Additionally, we derive
a new algorithm, the linearized Gaussian variational approximation (LGVA) algorithm. It is
derived as a compromise between VOGGN and OGGN. OGGN is similar to an iterative Laplace
approximation as it does not sample. The difference between VOGGN and LGVA lies in the
order of operations: VOGGN samples first and then uses the GGN while LGVA applies the GGN
and then samples. An illustration of the order of operations of the three algorithms is given in
Table 4.1. Finally, we show how the Gaussian variational approximation at every step of these
NGVI algorithms can be cast as a Bayesian linear or Gaussian process regression problem.
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Algorithm Step 1 Step 2

VOGGN  sample 0y,..,05 ~ N (ut,2;) S lin. networks flﬂi (z;0),..., l‘l’rf (x;0)
LGVA 1lin. network fh* (x; 6) sample 01, ..,05 ~ N (p, X¢)
OGGN  1lin. network fi'(x;0) use the mean p,

Table 4.1 — [llustration of three variational generalized Gauss-Newton algorithms. The order of
approximating the expectation by samples and applying the linearization of the GGN yields
different algorithms. Sampling is part of the variational inference algorithm while linearization
comes from the GGN. Only VOGGN samples many neural networks. OGGN is a crude version of
LGVA and VOGGN since it uses only the mean instead of sampling.

4.1 Gaussian Natural Gradient Variational Inference

We denote by ¢;(60) = N (u:, ;) the Gaussian variational approximation to the posterior at itera-
tion ¢. In this chapter, we will work with the natural parameters. For the Gaussian distribution,
the natural parameters at iteration ¢ are given by

1
nY =2y, and ' = -5 (4.1)

It is mathematically convenient to work with this parameterization for NGVI. NGVI updates the
first and second natural parameter of the Gaussian as

2 e = (1= e +9E5 o + 7 [VLE [log p(D]0)] — 2VsE log p(D|6)] pe] ,  (4.2)
1 1 1
—5%eh = =) |52 +9 |52+ VsERoeso), “3)

where the expectation is taken over the posterior approximation ¢; at iteration ¢. The update
tells us that we combine the current posterior approximation ¢; with the prior using a convex
combination (usually v < 1). The data dependency is only due to the gradients with respect to
mean and covariance of the expected log likelihood terms. Due to the linearity of expectation,
the expected log likelihood can be written as

N
E [log p(D)|6)] [Z log p(yi| f (x:; ))] =Y Ellogp(yilf(=::0))], (4.4)

=1 i=1

which allows us to restrict ourselves to a single representative data pair (, y).! Therefore, the
problem reduces to estimation of the derivatives V ,E [log p(y| f (x; 0))] and Vs E [log p(y| f (x; 0))].
To enable the computation of these gradients, we use the identities made popular by Opper and
Archambeau [37] that we introduced in section 2.2 (see Equation 2.15 and 2.16). This allows to
express the gradients of the expectation as the expectation of gradients for individual samples
from ¢,. To derive different Gaussian NGVI algorithms, different approximations to these deriva-

'In a practical scenario, one can use doubly-stochastic variational inference by sampling subsets of data to obtain
an unbiased estimate[16].
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tives have been proposed based on the GGN [19, 20, 55]. After introducing the VOGGN algorithm,
we will add one more variant to this family of Gaussian NGVI algorithms. Recall that fl?;; (x;0)
denotes the neural network function linearized at 6, due to the GGN. Further, we denote S

Monte Carlo samples from the approximating distribution ¢;(8) = N (¢, X¢) by 04, . .., O5.

In all the following derivations, we first apply the identity of Opper and Archambeau [37].
This allows us to estimate the derivative with respect to the mean and covariance by sampling
individual gradients. Recall the equalities from section 2.2

Vo, n (e, 30) log p(Ylf (x5 05))] = Eo,nr(pe,30) [Vo log p(yl f (; 05))] (4.5)

1
VsEo, (e, log p(y| f(x;05))] = S0~ (11 50) (Vo logp(y|f(z;6s))] . (4.6)

All following algorithms vary only in their approximation to these expectations and the log
likelihood or its gradient and Hessian. We now show three different variants.

4.2 Variational Online Generalized Gauss-Newton

The variational online generalized Gauss-Newton algorithm uses the GGN after sampling pa-
rameters from the approximating distribution. For the first and second derivative, we have

S
B~ (.2 [Volog p(y| £ (@; 6) gz v, f(@;65)). (4.7
. 5
Eo, (i, 5) [ Voo log p(yl f(z; 65) §ZV99P y|f(x;05))
i=1
1
52 eep y\fhn z;6;)) (4.8)
1_ S
52 x;:0,) T A(f(x:0,))J (x;05).

For the first derivative, simply approximate the expected gradient using S samples. For the
Hessian, we first sample S neural network models and then linearize these models individually
at the sampled parameters 6. We consider this expansion point as a constant and therefore can
compute the Hessian of the linearized neural network log likelihood with respect to individual
samples 6,. This is like simultaneously sampling the linearization point and parameter. Simi-
lar algorithms proposed before, have used either a diagonal, low-rank, or Kronecker factored
approximation to the Hessian [4, 19, 32, 55]. Next, we introduce a new algorithm that does not
apply the GGN per sample but rather before sampling.
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4.3 Linearized Gaussian Variational Inference

The linearized GVA applies the generalized Gauss-Newton approximation before sampling. That
means, we linearize the neural network at some point 8, and then compute the gradients. Here,
we choose to linearize at u;. Therefore, we have

Eo, A (u,50) [Vo log p(ylf (2 05))] = Eg,nr(u,s0) [Velogp(ylfi (:6s))]

S
] (4.9)
= g Z J<x7 “t)Tr(yv fﬁﬁ (wﬂ 08))7
=1
B~ (ue.20) (Voo log p(ylf (@3 65))] ~ Eo.nu,3,) [Voo l0g p(ylfiy (:6,))]
— Eosz(NhEt) [ — J(x; Mt)TA(fllier (x;05))J (x; “t)] (4.10)

S

= g D T ) A (2 02))T )
=1

In contrast to VOGGN, we only sample in the first order of the neural network. LGVA has two
potential advantages over VOGGN: we need to compute only one Jacobian no matter how many
samples we take and linearization might stabilize the training. LGVA can be seen the variational
twin of the Laplace-GGN since it constructs a GLM in each step and not only at the MAP. In this
GLM, we take a step of natural gradient variational inference. Therefore, we should predict with
this model using the GLM sampling method. The reason is easy to see: in the above derivation,
we only work with the linearized neural network.

4.4 Deterministic Variational Online Gauss-Newton

The last algorithm we introduce is called online generalized Gauss-Newton (OGGN). It is mo-
tivated as a deep learning optimizer derived from natural gradient variational inference [20].
Instead of sampling to compute expectations, we simply take the current mean u.. Therefore,
this method is related to the Laplace approximation.We have the derivatives

Eo. N (ur,50) [V log p(y| f (2 05))] =~ V. log p(y| f (2; pe))
= J(x;ut)TT'(ya I (x5 ),
Eo, N (ui,5) [Voo log p(y|f(x:65))] = V3, log p(y| f (; )
~ = (@ ) A (05 1)) T (a5 par),

(4.11)

(4.12)

where we approximate the expectation using the mean. For the second derivative, we use the
GGN to get the last line. Note also that we can obtain above algorithm starting from LGVA and
using the mean p, instead of sampling parameters 6;.
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Algorithm | samples f,(x) Jy(x)

VOGGN | S F(w:6,) J(z:6,)
LGVA | S fin (23 65) J (25 )
OGGN |1 fin (@) = ) J (25 0)

Table 4.2 — Values of the parameters in Theorem 4.1 for the three algorithms. 6, is a sample from
the posterior approximation ¢; at iteration ¢ and p its mean. Only VOGGN samples S neural
networks and obtains individual Jacobians.

4.5 Variational GGN Iterations as Exact Inference

In line with the proofs for the Laplace-GGN approximation, we will show that all above NGVI
algorithms solve local Bayesian linear regression models. Again, we can interpret these models
in the function-space and characterize them as Gaussian processes. This analysis also explains
why VOGGN is the most powerful algorithm and can be expected to predict well when we sample
from the neural network. LGVA and OGGN are therefore expected to require linearization to
predict accurately.

The natural parameter updates of the Gaussian variational approximation in Equation 4.2
and 4.3 can simply be written into the Gaussian posterior approximation ¢, by multiplying with
the Gaussian sufficient statistics (see Appendix C). The first step is to combine the prior and the
posterior approximation at step ¢ to obtain an intermediary prior. We take the terms independent
of the data from the natural parameter updates and define the natural parameters of the Gaussian
pi(0) = N(m, S)asnM) = (1-7)8; 'y ++55 o and n® = -3 [(1 — )=, +v2;"]. Resolving
the data-dependent term requires more steps and is shown in the proof of the following theorem.

Theorem 4.1. The VOGGN, LGVA, and OGGN algorithms perform exact Bayesian linear regression
in each update. In the most general case, we can characterize the updated posterior approximation

qi+1(0) as

g+1(0) < pi(6) [ |

=11

N s A A ) s
% <y g (Fo@) + AGF () (2:)(8 — o), ,yA(fs<a:i>>> @13
=1

where S is the number of Monte Carlo samples, -y the step size and the function and Jacobian values
fs and J, depend on the algorithm. For the particular values, see Table 4.2. The key difference to
Theorem 3.1 lies in the fact that we sample 6 from q,(0) as opposed to taking the mean. For the
overdispersed Gaussian likelihood, this also holds but needs to be written slightly differently since
A(f.(x)) does not correspond to the noise variance (see end of proof below).

Proof. The prior p;(0) arises from the natural parameter update. Additionally, we plug the data-
dependent terms into the Gaussian natural parameterization (cf. section 2.1 and Appendix C). In
particular, we need to plug into ¢?{7(®)) where 77 denotes the data-dependent natural parameter
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summands of Equation 4.2 and 4.3 as follows
T — exp {7<9, VuE [log p(D|6)] — 2V=E [log p(D|6)] pe) +7(68", VsE [logp(DIB)D} :

Next, we can use the linearity of expectation and write E [log p(D|0)] as a sum over the N data
points. Since the inner product is linear, we can pull the sum outside of the exponent and get a
product over N data points instead:

N
[Iexp {7<9, VuE [log p(yil0)] — 2VsE [log p(y;|0) pe]) + (0607, VSE [logp(y@'IG)D} :
=1

where we have abbreviated log p(y|f(x;0)) as log p(y|@). Taking S samples 6, ...,0s ~ ¢(0)
leads to a sum over S divided by S. The sum can again be pulled outside to obtain a product over
these samples and we pull the gradient inside the expectation to obtain

[T TTexp {56, Vologp(yil6,) — V3o logp(yl6.) ) + 5500, Vg log p(yil6.)) }

We continue with the exponent for a single data and MC sample. We use f,(x) for the function
and J,(x) for the Jacobian for some data point (z, y) and parameter sample 6,. For brevity, we
write A, := A(fs(x)). Then, we have for a single exponent

200.0,(2) Tr(y. £,(2)) + J.(@) AT (@)p1) - 5=(007. (@) AL, (@)
—2071(@)7 (y— g7 (@) + AT (@) - 5207 (@) TA ()0

5 (g ) + A@) @0 - ) - w) (PA) (57 (Fule)) + A(@) (0 ) — )

+ é (y - g_l(fs(ﬂc))>T <5A8>_1 (y - g_l(fs(m)))

where we first used the inner product properties and then completed the square. The first term
in the individual exponent yields a Gaussian density with the desired structure and therefore
concludes the proof. Note that for OGGN, we do not sample so the proofis simpler but follows the
same steps. For the overdispersed Gaussian likelihood, we can set A, = I above and then divide
all terms by the dispersion parameter, i.e., variance. That is only possible because both residual
and Hessian are scaled by 02 (see. Table 2.1). Then, we maintain a Gaussian likelihood. O

In comparison to Theorem 3.1 obtained for the Laplace-GGN approximation, this theorem
characterizes the steps of an approximate inference algorithm as opposed to the stationary
point. Therefore, we additionally have the step size + in our model. The deterministic OGGN
algorithm (S = 1) is similar to the Laplace-GGN approximation. This is apparent if we set the
step size 7 of OGGN to 1 at a stationary point: The linear regression model in Theorem 3.1 and
Theorem 4.1 become equivalent. OGGN has the advantage that it is an online algorithm and
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provides a posterior approximation in every step and not only at a MAP estimate. All derived
quantities in chapter 3 can also be applied to the OGGN posterior approximation: in particular,
we should predict using GLM sampling in Equation 3.15.

The Bayesian linear regression model corresponding to VOGGN and LGVA varies significantly
due to the S samples. Each sample augments the model with N new predictive models that
always predict the same N targets y from observations x. In section 2.2, we have characterized
the stationarity of the Gaussian variational approximation, which depends on an expectation.
Here, we have taken samples to approximate this expectation and observe that this indeed leads
to a more global characterization due to an augmented linear regression model. Therefore, com-
paring OGGN with VOGGN and LGVA is similar to the relation between Laplace and Gaussian
variational approximation presented in section 2.2 but for iterations instead of stationarity. Fol-
lowing the developments of chapter 3, we can equivalently turn above Bayesian linear regression
model into a Gaussian process regression model with a kernel of size NKS x N K S. Potentially,
these models are useful to identify a good step size v and sample-size S since these parameters
are represented in the model.

4.6 Comparison and Posterior Predictive Computation

In chapter 3, we have introduced three ways to compute the posterior predictive of the Bayesian
neural network model. Based on the derivation of the algorithms and their relation to a Bayesian
linear Regression model, we can argue for the right choice of posterior predictive. LGVA linearizes
the neural network before taking samples and can therefore be also characterized as a GLM in
each inference step. This can be seen in the updates of LGVA (Equation 4.9 and 4.10) where we
use a linearized neural network for the log likelihood and therefore have a GLM. Since OGGN
can be derived from LGVA by a crude approximation of the expectation, the same argument
holds for OGGN. Further, OGGN is tightly connected to the Laplace approximation for which we
proposed to use the GLM sampling predictive. Therefore, both LGVA and OGGN should make
use of the GLM sampling predictive.

VOGGN works very differently from both LGVA and OGGN since we first sample and then
linearize. That means, during update steps we sample non-linear neural networks and then
linearize them individually at the sampled parameter. This allows the computation of the Hessian
approximation for different neural networks in Equation 4.8. Therefore, we obtain S different
Jacobians instead of a single one as in LGVA. In the predictive setting, this would allow to use
the NN sampling method. Notably, VOGGN is the only approximate inference algorithm where
we can arguably expect the NN sampling method to work well. Nonetheless, the NN sampling
method is the only one used for prediction with Bayesian neural networks in the past.
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Chapter 5

Experiments

In this chapter, we investigate the behavior of the analyzed and proposed algorithms and validate
our hypotheses. One of the key propositions of this work is that the computation of the predictive
distribution should be aligned with the inference algorithm. Therefore, we investigate experi-
mentally how the combination of approximate inference and the generalized Gauss-Newton
method impacts the posterior predictive. Further, we use the identified generalized linear and
Gaussian process models to approximate the marginal likelihood of a neural network, and use
the Gaussian process posterior predictive for explainability. We conduct our experiments on toy
regression and classification datasets that allow detailed visualizations. For the explainability
experiment, we use a binary handwritten digit classification task.

In Figure 5.1, we illustrate both datasets D each with N = 150 data points. The two-dimensional
classification problem is known as “two moons” [40]. Here, we have inputs x; € R? and targets
y; € {0,1}. The one-dimensional regression task is known as “Snelson” named after its inven-
tor [48]. In this case, we have inputs and outputs z;, y; € R. We further add an artificial gap in this
data set to make it more complicated and observe overfitting in line with [9, 20]. Both datasets
are standard toy problems to benchmark non-linear models like Gaussian processes and neural
networks. For both the regression and classification dataset, we proceed as follows: first, we
select our models using the marginal likelihood. That means, we find appropriate parameters for
the prior and, in the regression example, for the likelihood. Next, we compare the three posterior
predictive distributions for the different inference algorithms (cf. section 3.4). Finally, we make
use of the Gaussian process model to understand the predictions of our models.

For both tasks, we use a standard multilayer perceptron with 5 layers and 25 hidden units
per layer and the tanh activation function. All layers have bias parameters. We have parameter
vectors @ € RY with P = 2676 for the 1-D regression task and P = 2701 for the 2-D classification
task. The parameter vectors define our neural network function f(x;0) mapping inputs to
outputs as depicted in Figure 2.1. For the binary classification task, we use a Bernoulli likelihood,
i.e., we model Y ~ Bernoulli(f(«x;6)) where the neural network f parameterizes the natural
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(a) Regression dataset. (b) Classification dataset.

Figure 5.1 — Visualization of the two toy example datasets used in the experimental study. Fig-
ure (a) shows the univariate regression dataset Snelson [48] with an additional “data gap”. Fig-
ure (b) shows the two moons classification dataset that has a noisy decision boundary and can
therefore lead to severe overfitting.

parameter (cf. Table 2.1). In the regression case, we use a Gaussian likelihood with dispersion
parameter o2, i.e., we model the response Y ~ N (f(x;0),0?). In line with the literature, we
use a spherical Gaussian prior with precision § on the parameters, i.e., 8 ~ N (0,5 'Ip). Using
the marginal likelihood, we can then optimize the hyperparameter § for both problems. In the
regression case, we additionally have the observation noise o2 as hyperparameter.

5.1 Model Selection Using Marginal Likelihood

We use the Laplace-GGN algorithm introduced in Chapter 3 to compute an approximation
to the marginal likelihood. The marginal likelihood gives evidence to prefer one model over
another. Therefore, it allows us to find suitable hyperparameters § and 2. This procedure is
called empirical Bayes. Empirical Bayes is uncommon for neural networks and usually cross-
validation schemes are applied [12], even in Bayesian deep learning [19, 55]. While empirical
Bayes is uncommon for neural networks, it has been explored before in the context of Laplace
and Gaussian variational approximations [10, 54]. In particular, the method of Foresee and
Hagan [10] is the same as the one presented here in the case of a Gaussian likelihood.

For both datasets, we have N = 150 training samples and a test set D5 with 1000 additional
input output pairs. This allows us to estimate the generalization error. For the generalization
error, we use the average log likelihood on the test data at the MAP. Let p be the likelihood of the
corresponding model. Then, we have for the average log likelihood at the MAP

1
7 - Z log p(yi| f (xi; Omap)), (5.1)
|Drest| 4
(24,yi) EDrest

where z; is a scalar in the regression dataset. Ideally, the marginal likelihood approximation
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Figure 5.2 — Marginal likelihood with respect to observation noise o2 and prior precision § of a
neural network model on a toy regression problem with example posterior predictive distribu-
tions. In the top, the marginal likelihood approximation of a neural network model due to the
Laplace-GGN in comparison to average test and train log likelihood is displayed. The marginal
likelihood provides a robust way to choose hyperparameters and is in line with the test log
likelihood. In contrast, the optimal likelihood on the training data can go to zero which leads
to an overfitting model. In the bottom, the optimal posterior predictive due to the marginal
likelihood (x) and examples of overfitting (A) and underfitting (B) are visualized. We show the
posterior predictive mean and two standard deviations.

suggests the same optimal parameters as the test log likelihood. In the regression problem, we
choose the hyperparameter ranges o> € [0.001,10] and § € [0.0001, 100]. For classification, we
choose § € [0.01,100]. Using this range of hyperparameters, we train the one neural networks for
each parameter setting until convergence to a MAP estimate. For training the MAP objective, we
use the Adam optimizer [21]. At the MAP, we compute the Laplace-GGN approximation to the
marginal likelihood, i.e. , to the local generalized linear model. For the predictive distribution,
we therefore also choose the GLM sampling variant.

Figure 5.2 shows the marginal likelihoods for different hyperparameters on the regression
problem. The optimal hyperparameters found using the marginal likelihood are very close those
that generalize the best according to the test log likelihood. In contrast, we can see that the
neural network can become too expressive and overfit when we have weak regularization. Weak
regularization corresponds to a small prior precision § and can lead to a complex predictive func-
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Figure 5.3 — Marginal likelihood with respect to prior precision § of a neural network model
for classification with examples of the corresponding predictive mean. In the top, we compare
the marginal likelihood to the log likelihood on the testing and training dataset. The marginal
likelihood identifies the optimal range of prior precision between 0.3 and 2 in line with the test
log likelihood. In the figure displaying the log likelihood on the training data, the model overfits
clearly for small prior precision values. In the bottom, the mean of the posterior predictive due
to sampling from the generalized linear model is visualized for the model with optimal marginal
likelihood (x) and an overfitting (A) and underfitting (B) model. The overfitting model achieves
almost zero misclassifications in the training data due to an overly complex decision boundary.

tion that overfits to individual training data points. Figure 5.2 further depicts three generalized
linear model predictives: the optimal, an overfitting, and an underfitting model. We see that the
optimal model also visually trades off between complexity and simplicity while the overfitting
model is overly complex and fits the noise. In contrast, the underfitting model fails to match
the shape of the underlying data generating function. We identify the optimal hyperparameters
§ = 0.63 and o2 = 0.1. Notably, the observations are generated with a similar noise variance of
0.09.

In Figure 5.3, we conduct the same analysis for the classification problem and obtain similar
results: According to the marginal likelihood, the range of optimal hyperparameters lies between
0.02 and 2 which matches the plateau of the testlog likelihood accurately. The marginal likelihood
identifies the optimal hyperparameter § = 0.13. The training log likelihood goes to zero for
weak regularization indicating a perfect fit and correct prediction of each training data point.
However, both the marginal likelihood and test likelihood reject such an overfitting model.
Figure 5.3 further displays such a model in comparison to the optimal model according to the
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marginal likelihood and an underfitting model that only represents a linear decision boundary.
As in the regression problem, the optimal model also exhibits the best uncertainty around the
decision boundary as the boundary becomes wider away from the data. In the next section, we
focus especially on the properties of the posterior predictive distribution. We use the optimal
hyperparameters identified in this section.

5.2 Posterior Predictive Distributions

We have introduced three ways to obtain an approximate posterior predictive distribution for
a Bayesian neural network: NN sampling, GLM sampling, and BLR inference (cf. section 3.5).
Disentangling the GGN and approximate inference, we posed the hypothesis that only VOGGN
can lead to a stable predictive using NN sampling. We investigate this hypothesis here. We use
the optimal hyperparameters found in the previous section.

We train the neural network models using the three natural-gradient variational inference
algorithms introduced in Chapter 4. We use the step size 8 = 0.999, a single Monte Carlo sample
from the posterior approximation for VOGGN and LGVA per step, and initialize the posterior
covariance to 3 = 0.1Ip. We use the same randomly initialized mean g for all algorithms and
train until convergence. For the Laplace-GGN (L-GGN) algorithm, we again use Adam to obtain
a MAP estimate and then apply the Laplace-GGN posterior approximation. For the NN and
GLM sampling posterior predictive approximations, we use 1000 Monte Carlo samples. In the
regression case, we have a Gaussian likelihood and therefore the GLM coincides with the BLR
model. In the classification case, the GLM corresponds to a Bayesian logistic regression model.

In Figure 5.4, we display the posterior predictive distributions on the regression task for all
algorithms using the NN sampling and GLM/BLR inference method. Additionally, we display
posterior predictive samples to understand not only the marginal mean and variance but also
the joint predictive distribution. The BLR posterior predictive works consistently across all
approximate inference methods and provides reasonable uncertainty estimates. Between the
methods, there is no significant difference using the BLR predictive. In contrast, the NN sampling
posterior predictive fails for the Laplace-GGN and the Laplace-like OGGN since the predictive
mean is inaccurate and the variance exceedingly high. The posterior approximation due to LGVA
also leads to overestimated predictive uncertainties and an inaccurate mean. Only VOGGN
exhibits a posterior predictive that is reasonable and similar to the GLM variant of the VOGGN
posterior approximation. On this toy example, we can clearly see that we should predict based
on the underlying model that we infer.
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(b) Posterior predictive samples (NN vs. GLM).

Figure 5.4 — Comparison of posterior predictive by NN sampling and GLM sampling for four
approximate inference algorithms. The top row shows prediction due to NN sampling and the
bottom row shows GLM sampling. In (a), we show the predictive mean and standard deviation.
Figure (b) displays three posterior predictive samples. For the Gaussian likelihood used here,
GLM sampling is equivalent to the exact Bayesian linear regression predictive. Using the GLM,
the predictions are reliable for all algorithms. In contrast, only VOGGN gives reasonable results
when predicting by sampling neural networks. Since LGVA samples like VOGGN, it can still give
reasonable predictions using NN sampling. OGGN and L-GGN do not work in this case.
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(b) Posterior predictive uncertainty due to Bayesian linear regression.

Figure 5.5 — Comparison of NN sampling, GLM sampling, and Bayesian linear regression posterior
predictive. Figure (a) shows the posterior predictive mean by NN sampling in the top and GLM
sampling in the bottom. Only VOGGN maintains good performance using NN sampling. All
four algorithms show optimal performance when we use GLM sampling to predict. In Figure (b),
we look into the model uncertainty and observation noise due to the Bayesian linear or GP
regression model. While the observation noise has simply the variance of the Bernoulli response
variables, the model uncertainty on the left grows further away from the data and is relatively
low where the decision boundary is supported by data.

In the classification example, we make similar observations: Figure 5.5a depicts the posterior
predictives of all methods using NN and GLM sampling. Again, only VOGGN leads to a posterior
works for both NN and GLM sampling. In line with the regression problem, the posterior predic-
tive due to the GLM performs consistently across all methods and provides similar predictive
distributions for posterior approximations. Prediction using NN sampling is again only viable
using the VOGGN posterior approximation. LGVA and OGGN show signs of a decision boundary
but the quality is worse than that of the GLM predictive. For the Laplace-GGN posterior approxi-
mation, NN sampling leads to uniform predictions and therefore no decision boundary. In stark
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contrast, the corresponding GLM sampling predictive yields an optimal predictive model.

In Figure 5.5b, we analyze the Bayesian linear regression model that is inferred exactly when
we use the Laplace or Gaussian variational approximation. In particular, we look into the un-
certainty in the posterior Gaussian process and the observation noises. The observation noise
corresponds to the variance of the modelled Bernoulli random variable and therefore highlights
the decision boundary. However, the uncertainty in the Gaussian process is low around the deci-
sion boundary and instead grows away from the data. This property could be useful to extend
the decision boundary as it is desired for example in active learning or Bayesian optimization.
Interestingly, the model has high model certainty outside of the data as long as it is far away from
the inferred decision boundary. This is expected since the kernel of neural networks is typically
not stationary [25, 35, 52].

The experiments on posterior predictive distributions show clearly that it is important to
understand the approximations used in Bayesian deep learning. Having understood the impact
of the GGN on individual approximate inference algorithms, we can choose the right posterior
predictive and substantially improve the performance. In fact, the pathology of prediction with
NN sampling using the Laplace-GGN posterior approximation has been already pointed out in
the literature [9, 44]. Ritter et al. [44] argued that conditioning and the ratio of data points and
parameters leads to this problem. The GLM sampling method fixes this problem and it turns
out that it works reliably for few data points (V = 150) and comparatively many parameters
(P > 2000). The problem is therefore not due to conditioning but a predictive procedure that
does not align with the inference and approximation methods used.

5.3 Function-Space Neural Network Inference for Explainability

In this section, we use the Gaussian process formulation of the Laplace-GGN approximation
to explain neural network predictions. In chapter 3, we have shown that the generalized Gauss-
Newton gives rise to a generalized linear or generalized Gaussian process model. Gaussian
process models are instance-based learning algorithms, i.e., they make predictions directly based
on the training data. Therefore, we can understand predictions by looking into the training data
points responsible for them. In particular, we try to understand predictions of a convolutional
neural network on the binary classification task of distinguishing handwritten digits 4 and 9.

The predictive mean of a Gaussian process regression model can be written as an inner
product of the kernel between a test point and the training data and an importance vector [42].
We have a vector a € RY that gives an importance factor to each training data point that depends
on the likelihood of the generalized GP model. Further, we have the kernel vector k € RY with
entries computed by the kernel x(x., ;) between a test data point . and the training dataset.
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Then, the predictive mean of the GP posterior mean on a new data point can be written as

N
fo= ) aik(m, @), (5.2)
=1

This allows us to understand the prediction by looking into individual entries of @ and k(x., x;).
In particular, for a generalized Gaussian process, the importances a can be related to the resid-
uals r(y, f) of the log likelihood, i.e., the first derivative. In the classification case, we have
a; = Vylogp(y|f(x;)) where f is, for example, our Gaussian process formulation of the neural
network and p denotes a Bernoulli likelihood. The kernel k(x., ;) quantifies the similarity be-
tween a test and training data point according to the feature map or kernel function. Therefore,
it allows to identify similar training data points that lead to a particular prediction.

We apply the Laplace-GGN to a convolutional neural network. We train the neural network
on the digits 4 and 9 which constitutes the hardest binary classification task on the MNIST
dataset [23]. In particular, we randomly select 3000 samples for training. The network has 2
convolutional layers each followed by a ReLU activation function and MaxPooling. The last three
layers are linear and also use the ReLU activation function. In total, the network has P = 4587
parameters. We use hyperparameter § = 10. Since the Laplace-GGN approximation can be
equivalently cast as the Laplace approximation in a generalized Gaussian process model, we
obtain for a the residuals r(y;, f(x;; Omap)). The kernel between a new test and a training data
point is given by s (z., x) = 0~ 1J (x4; 0,)J (x; 6..).

In Figure 5.6, we analyze both quantities for the binary MNIST problem. Since the model
achieves perfect classification on the training data, the residuals are not bigger than 0.2 in
Figure 5.6a. The data points with the highest absolute residuals can be understood as boundary
points and depict particularly notable examples: 4s that look like 9s and vice versa. These
data points have a high impact in decisions since their residuals play an important role in the
predictive formulation in Equation 5.2. In the middle range, we have ordinary examples that are
easy to distinguish. In Figure 5.6b, we display one correct and two incorrect predictions along
with examples of training data points and the kernel value between these samples and the test
input. For the incorrect predictions, we find that an example of the opposite class strongly aligns
with the test input (see rank 1). In both cases, these samples are also boundary points that highly
influence the decision. This ultimately leads to a misclassification.

Understanding predictions of neural networks using an instance-based approach can poten-
tially help make decisions more robust, improve explainability, and identify problematic training
data. It would further be interesting to understand how different neural network architectures
induce different feature maps and therefore Jacobians. Potentially, some choices lead to good
inductive biases for Bayesian neural networks.
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(b) Classification on test inputs and similarity to training data.

Figure 5.6 — Understanding neural network predictions using a Gaussian process view: in Fig-
ure (a), the elements of the importance vector a are displayed in order and with corresponding
examples. In the left and right border, we can identify boundary points, i.e., data points that are
nearly misclassified: in fact, on the left we have 4s that look like 9s and vice versa on the right. In
Figure (b), the similarity between training and test data points is used to understand predictions.
On the left, test data points and their predictions 7 are displayed. On the right, we list 8 training
data points and their labels together with the corresponding similarity to the test image. The
kernel vector k. for a test image x. determines the decision together with the vector a. We can
see that misclassified examples correlate highly with examples of the wrong class due to the
learned feature map of the convolutional neural network. Further, the misclassified inputs both
show high similarity to points at the decision boundary that highly impact the final prediction.
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Chapter 6

Discussion and Future Directions

In this chapter, we discuss the work related to this thesis and conclude the results with a future
outlook. Throughout this work, we have referred to related literature where appropriate. Here,
all references are summarized in a single place. The conclusion contains a short review of the
presented results and discusses possible directions for future work.

6.1 Related Work

This thesis complements and extends the paper “Approximate Inference Turns Deep Networks
into Gaussian Processes” [20]. The focus and standpoint of the present work is different. We try
to disentangle the generalized Gauss-Newton method and approximate inference in Bayesian
deep learning to gain theoretical understanding and practical advantages. In contrast, the prior
work focuses on obtaining a Gaussian process representation of neural networks directly from
the Bayesian deep learning algorithm [20]. In contrast, the present work can therefore identify
an intermediary generalized linear and Gaussian process model that proves to be useful to
derive new posterior predictive, marginal likelihood, and inference algorithms for Bayesian
neural networks. The Bayesian linear and Gaussian process regression models of both works are
equivalent up to reparameterization. The reparameterization plays a major role to practically
apply the identified connection. Khan et al. [20] identify a linear and GP regression model
in a transformed data space, which, in its original form, cannot replace the neural network
model. Next to the two algorithms VOGGN and OGGN introduced by the prior work, the present
work additionally introduces the LGVA algorithm that lies between Laplace and variational
approximation. The experiments presented here are different since they serve the purpose of
particularly showing the impact of the GGN on approximate inference and are based mostly on
the novel generalized linear and Gaussian process model formulations. The prior work focuses
on the Gaussian process regression formulation that is obtained. Therefore, their marginal
likelihood formulation only works for a Gaussian likelihood.
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Recently, there has been a surge of interest in the connection of neural network training or
inference and Gaussian processes. Williams [52] and Neal [36] already connected Bayesian neural
networks to Gaussian processes in the 90s. In particular for a single hidden layer of infinite width,
one could show that, under a Gaussian prior, the neural network function can be characterized
as a non-stationary Gaussian process [52]. This result has recently been extended to other
architectures, activations functions, and depths [25]. The derivation of the neural tangent kernel
that characterizes the training of a neural network in function space [17] has again sparked the
interest in relating neural networks and Gaussian processes. Based on the work of Jacot et al. [17],
Lee et al. [26] showed that infinite width neural networks can be understood as linearized neural
networks and therefore be connected to Gaussian process inference if we pose a prior on the
parameters. They further found empirical evidence that this connection even holds in the finite
setting. In this work, we do not analyze the probabilistic neural network model theoretically
but rather the combination of this model with a corresponding practical algorithm. Notably,
this gives us similar results and allows to relate neural network inference with Gaussian process
inference. In contrast, we do not need to take the limits but obtain similar results due to the
combination of the GGN and a Gaussian posterior approximation.

The combination of the generalized Gauss-Newton and approximate inference for Bayesian
deep learning is very common. The GGN is mostly applied to approximate the Hessian of the
log likelihood. In some cases, it is however used to approximate the Fisher information matrix
required for natural gradient descent. For a discussion this, we refer the reader to the recent work
of Kunstner et al. [22]. The combination of Laplace approximation and Gauss-Newton is popular
and has already been suggested for least-squares regression with neural networks in the 90s [10].
Modern large-scale Bayesian deep learning algorithms based on the Laplace approximation
do not use the full GGN approximation but rather diagonal or factorized variants [44] and
have successfully been applied to continual learning with neural networks [43]. The Gaussian
variational posterior approximation is more popular than the Laplace approximations as it
promises to be more precise [2]. In particular, the combination with natural gradients [1], efficient
and numerically stable inference algorithms are possible [19, 38, 55]. Prior to their work, the
GVA for neural networks mostly relied on backpropagation and the reparameterization trick.
The posterior approximation of these algorithms is often unstable and depends heavily on the
hyperparameters [4, 9]. Notably, the state-of-the-art results obtained in Bayesian deep learning
all rely on a combination of Gaussian posterior approximation and generalized Gauss-Newton
method [19, 32, 38, 44, 55]. This work is the first to analyze the interplay of the generalized
Gauss-Newton and approximate inference in detail. All above works start from the motivation
of a Bayesian deep learning algorithm and use approximations along the derivation of a new
algorithm. In contrast, we discuss the impact of individual approximation choices and the impact
on the underlying probabilistic model. Further, prior work exclusively relies on NN sampling to
approximate the posterior predictive which we find to be unreliable in many cases. The detailed
present discussion allows to fix this problem due to two new posterior predictive distributions
that are in line with the inferred model.

Problems with the posterior predictive due to a Laplace-GGN approximation to a neural
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network are known [44, 9]. Recently, Foong et al. [9] discovered that the BLR predictive works
consistently better than NN sampling for univariate Gaussian likelihoods. This work supports
this observation theoretically and further extends the result to other likelihoods using the stable
GLM sampling prediction method. Further, we justify the same predictive procedure for Gaussian
variational approximations. The form of the marginal likelihood based on the Bayesian linear
regression model is equivalent to the evidence approximation due to Occam’s razor [28]. The
difference is that we propose to compute the model evidence of the underlying GLM and obtain
an additional Gaussian process variant.

The seminal work by Wedderburn [51] studies the impact of the generalized Gauss-Newton
method on maximum likelihood estimation for generalized linear models. In particular, he
finds that an optimization step using the Gauss-Newton method of a non-linear model with
GLM likelihood can be cast as a least-squares regression problem. This least-squares regression
problem specifies an adjusted noise variance similar to the one we find here. He was the first to
generalize the Gauss-Newton algorithm to GLM likelihoods and therefore defined the general-
ized Gauss-Newton algorithm. He shows that the generalized Gauss-Newton method applied
to maximume-likelihood estimation requires iterative solutions of a least-squares regression
problem. In our case we have a similar Bayesian linear regression model that further allows com-
putation of other quantities and can be related to Gaussian processes. While we have specifically
focused on Bayesian neural networks, the results presented here also hold for general parametric
functions f(x; 0) that are at least once differentiable in the parameter 6. This is precisely the
case Wedderburn [51] worked with.

6.2 Conclusion

In this thesis, we have disentangled the generalized Gauss-Newton and approximate inference
methods in Bayesian deep learning algorithms. The individual analysis of both methods has shed
new light on these algorithms: the generalized Gauss-Newton algorithm turns the neural network
model into a local generalized linear model. Further, approximating the posterior of the GLM
requires the exact solution to a Bayesian linear regression problem which gives us the posterior
approximation to the neural network model. We have made use of this new understanding
to improve the posterior predictive of Bayesian neural networks, enable empirical Bayes for
tuning hyperparameters using the generalized linear model formulation, and identify a function-
space posterior approximation for neural networks. The theoretical findings are supported by
experiments on simple toy datasets that enable detailed investigation. The present work enables
future research in quantifying the accuracy of approximate Bayesian inference using the two
identified stages and in applying the derived quantities based on the underlying generalized
linear and Gaussian process models to real and larger datasets.

For the Laplace approximation, we have shown that the common combination with the
generalized Gauss-Newton optimization method can be understood in two stages: the first stage
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consists of obtaining a MAP estimate of the neural network and using the generalized Gauss-
Newton that implicitly linearizes the neural network at the MAP. This turns the neural network
model into a generalized linear model. The second step is to apply the Laplace approximation. We
have found that the Laplace approximation implicitly moment-matches the generalized linear
model likelihood to a Gaussian likelihood. This turns the GLM into a Bayesian linear regression
model which can be solved exactly and gives us the neural network posterior approximation.
Both intermediary models, the generalized linear and Bayesian linear regression model, have
Gaussian process counterparts that have the same marginal likelihood and posterior predictive.
This connection allows a function-space Laplace-GGN posterior approximation which is useful
when the number of parameter greatly exceeds the number of data points. Approximate inference
is therefore conducted in the underlying generalized linear or Gaussian process model. Hence,
we have argued that these models should be used for the posterior predictive and marginal
likelihood computation. The regression models that we need to solve exactly also provide robust
predictions but have the wrong likelihood. In particular, we presented the GLM sampling and
closed-form BLR predictive distributions that complement the common NN sampling method.
The experiments provide practical evidence that the GLM sampling method provides more
consistent posterior distributions than NN sampling. Further, selecting hyperparameters using
the marginal likelihood approximation to the GLM provides a way to optimize neural network
hyperparameters only based on the training data. Lastly, we have shown that the Gaussian
process view can be useful for understanding the predictions of neural networks.

The generalized Gauss-Newton method is used in many recent variational inference algo-
rithms for Bayesian deep learning and it is therefore critical to understand its impact. Variational
inference differs from the Laplace approximation in one critical point: we have to compute
an expectation to obtain the updates or characterize stationarity (cf. section 2.2). In practice,
we approximate this expectation by sampling. Therefore, we identified two ways to make use
of the GGN: we either sample first and then apply the GGN or vice versa. Applying the GGN
first led to the newly introduced LGVA algorithm. Sampling first led to the VOGGN algorithm
that we analyzed as a prototype for most variational algorithms for neural networks. The third
algorithm, OGGN, is a crude approximation to the LGVA that avoids sampling. We obtained the
following understanding of the LGVA algorithm: using the GGN first leads to a generalized linear
model as for the Laplace approximation. A variational inference step can then be formulated
as a Bayesian linear or Gaussian process regression model. This model made clear that the
LGVA algorithm does not sample neural networks but only generalized linear models. We have
therefore argued for the GLM sampling method for the posterior predictive. For the VOGGN
algorithm we found that that underlying regression problem we solve in each step is specified by
different neural network feature maps. This corresponds to sampling neural networks and led to
the conclusion that the posterior approximation inferred with VOGGN can make use of the NN
sampling posterior predictive. Experimentally, we found results that support this hypothesis. In
fact, VOGGN provides the only posterior approximation that allowed to use NN sampling and
obtain reasonable predictions consistently. Interestingly, we could not determine the single best
algorithm in the experiments. Both the Laplace and variational algorithms provide equally good
predictions and uncertainty estimates using the GLM sampling method introduced here.

47



6.3 Future Work

The results presented in this thesis can be used for future theoretical or applied research. On
the theoretical side, the isolation of the generalized Gauss-Newton method and approximate
inference in Bayesian deep learning could be useful to investigate convergence, priors, and
feature maps. The experiments presented here only serve the purpose of understanding the
theoretical results and validate hypotheses. An interesting future direction would therefore be to
investigate these results on real or larger-scale data and for other applications.

The individual understanding of the generalized Gauss-Newton and approximate inference
for Bayesian deep learning could be useful to jointly specify how accurate these methods really
are. In particular, the disentangled understanding also sheds new light on the prior in Bayesian
deep learning. In the Laplace approximation, it serves as a regularizer during MAP estimation
and as a distribution in approximate inference. However, since we infer a GLM due to the GGN,
the prior potentially plays another role during inference. Since the MAP plays an important
role, research on the loss landscape of neural networks could be useful to understand Bayesian
deep learning methods better. Another future direction is to analyze the forms of Jacobians that
different architectures and activation functions give rise to. This could help to better understand
the GLM or GP kernel that we obtain during approximate inference. Lastly, it is important to
understand the further diagonal or factorized approximation applied to the GGN or posterior
covariance approximation. The impact of this further approximation is topic of many studies
but has not been fully solved yet.

The transformation from probabilistic neural networks to simpler linear and Gaussian pro-
cess models is potentially useful for many applications. For linear models, many interesting
quantities can be computed efficiently and in a numerically stable way. One particularly exciting
avenue is to use the marginal likelihood of the underlying linear model to tune neural network
hyperparameters. The marginal likelihood is traditionally one of the arguments for a Bayesian
approach but its application to model selection has been rarely used in Bayesian deep learning.
Here, we have shown that this method works well on toy problems but it is important to scale it
to more data points and more parameters. This is also where the Gaussian process variant might
be useful: for a reasonably sized dataset (~ 10*), we can conduct a function-space posterior
approximation for an arbitrarily large neural network. This function space approximation leads
to the same posterior predictive as a full posterior covariance in the parametric space. I believe
that this could also enable interesting applications in transfer learning. Lastly, the GLM sampling
and exact BLR posterior predictives for Bayesian neural networks introduced in this work seem
to provide robust uncertainty estimates and, across methods, work better than traditional NN
sampling. It is important to investigate this behavior on other larger datasets. If this observation
is consistent, it could enable better performance on applications that require good uncertainty
estimates like active learning or Bayesian optimization using neural networks. The closed-form
functional form of the posterior due to the Gaussian process connection could also be useful for
regularizing neural networks in the function space as opposed to the parameter space.
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Appendix A

Proof of GLM Log Likelihood
Derivatives

Lemma 2.1. Letp(y|f) be an exponential family distribution of the form in Equation 2.4 and let
Y denote the corresponding random variable. The first and second derivative of the log likelihood
take the simple form

Vilogpylf)==y—-ViA(f) =y —EY]=y—g '(f) = r(y. f), (2.5)
V2, logp(ylf) = ~V3A(f) = ~V[Y] = —A(f), (2.6)

where we defined the residual r(y, f) € RX and second derivative, or Hessian, of the negative
log likelihood A(f) € RE*K . We have thus identified the inverse link that gives the mean of
the response variable as the first derivative of the log cumulant. In the case of an overdispersed
exponential family [33], the variance of the response variable is further scaled by the dispersion
parameter o while the derivatives are divided by it. We have this case, for example, in a Gaussian
likelihood (see Table 2.1).

Proof. We will present a short proof for continuous distributions with scalar natural parameter
and label of the form in Equation 2.4. The applied steps directly extend to discrete distributions
and become more tedious for multi-dimensional distributions but are analogous. We being with
the first derivative with respect to the natural parameter: since p(y|f) is a probability density
that integrates to 1, we can rewrite Equation 2.4 as A(f) = log [ h(y) exp {yT f } dy. We start with
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the first derivative:

oepll) 25—y - Lo [ ) e sy ay
g/ exp{yftdy [ Gph(y) exp{yf}dy
- exp A(f) - exp A(f)
_, ] Mo WY e ).

We used the dominated convergence Theorem to exchange integral and differentiation in the
second line. For the second derivative, we have

2 0}
T 2ty ) =~ [ unt) e oS — A}y

—— [ grentes - AWy = [untess (o - 403 (5= 25 ) ay

2
_ < [ty v us - A(f)}dy> — [ hty) e s — Ay
=E[Y?-E[V? =-V[Y].
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Appendix B

Completing the Square

In the proofs, one of the main techniques used is to simply compute the square which leads to a
simplification or useful relation. Here, we quickly elaborate on what that means. We assume a
symmetric matrix A € RP*P that is positive semi-definite, i.e., we can use a pseudo-inverse if
necessary. Further, we have vectors , b € R”. Then, we have the following identity:

1 1 1
52 Az +aTb=c(2+A7'0) A(x+Ab) - JbTA . (B.1)
This is exactly the form it shows up in the proofs. We can always use the pseudo-inverse here. Let

AT be the pseudo-inverse of A. Then, this holds because of the two properties (1) AATA = A
and (2) ATAAT = A™.
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Appendix C

Natural Gradient Variational Inference

For this section, we will make use of some equivalences in NGVI. To do so, we need two tightly
connected parameterizations of the Gaussian posterior approximation: the natural and expecta-
tion parameterization. We denote the first and second natural parameter by "), (?) and the
mean parameters ¢!, ¢(?), respectively:

nM ="y and n® = —%2*1, (C.1)

The ELBO can equivalently be rewritten in terms of these parameters.

In contrast to vanilla gradient descent, natural gradient descent uses the underlying infor-
mation geometry as opposed to the euclidean geometry to update parameters. That means, we
adjust the parameters of our Gaussian posterior approximation in the space of distributions
and not in the euclidean space of the parameters of our Gaussian. Here, we will derive natural
variational inference in the natural parameter space. Let n the natural and ¢ the expectation
parameters and F'(n) = Cov, [V, log ¢(0)] the Fisher information matrix of our approximating
distribution ¢ [15, 55]. Then, natural gradient variational inference in natural parameter space
with step size « is governed by the following dynamics:

Ner1 =M+ YF (M) VpL(n) = ne + 7V 6 L(9). (C.3)

Since the natural gradient in one parameterization provides the gradient in the other [15], we
have the second equality. This allows us to derive the updates for our models in natural parame-
ter space without computing the Fisher information. However, computing gradients with respect
to expectation and natural parameters can be inconvenient (especially for backpropagation).
Therefore, it is useful to further use the chain-rule and express the expectation parameter gradi-
ents in terms of gradients wrt. p1, . We have p = ¢(V) and = = ¢ — [¢V)] ? Therefore, we can
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simply write using the chain-rule:

Ven £(¢', ?) = Vil (p, ) - 2V L, B)p (C4)
Voo L@V, 6P)) = Vs L(p, %) (C.5)

We are therefore left with the two gradients with respect to the original parameters to obtain the
final update. Recall the form of the ELBO in Equation 2.14 and use the closed-form derivatives of
the KL-divergence of the prior p from ¢:

VuL(1,2) = V,E, [logp(D|0)] + g o — ' e (C.6)
1 1
VsL(p,X) = VsE, logp(D]0)] + 52*1 - 5251. (C.7)

The gradients with respect to the expected log-likelihood can be rewritten using Bonnet’s and
Price’s Theorems as shown in section 2.2. However, especially for the gradient with respect to %,
different further approximations are possible and yield different algorithms. Therefore, the next
sections will deal with the remaining term and analyze the update in detail.

We obtain the final NGVI in natural parameter space updates by plugging Equation C.4 and
Equation C.5 into Equation C.3. We take the gradient at iterate u;, 3; and write the natural
parameter updates:

St = S e+ [B0 o — B g + VLE [log p(D]6)] — 2VsE [log p(D|6)] ]

(C.8)
= (1= e + 935" o + 7 [VuE [log p(D|6)] — 2V=E [log p(D)6)] ]

1 1 1. 1.
_§2t+11 = —iilt Ly v {25% T 520 11 VsE [logp(DIH)]}
(C.9)
_ |-
- {_zt ] sy [_2201] +V5E [log p(D|6)]

This form makes apparent that we combine the current posterior approximation with the prior
usually with a convex combination (v < 1) of their natural parameters. The data dependency
comes solely via first and second derivative of the expected log likelihood under the approximat-
ing distribution. Another way of writing above update is therefore to identify natural parameters
of p, ¢ with parameters at iteration ¢, and those arising from gradients of the expected log likeli-
hood [18]. We denote by ¢;(0) the posterior approximation with parameters at iteration ¢. Then,
we can write with another natural parameter n and sufficient statistics 7'(0)

qi+1(0) o qt(e)(l_'Y)p(H)"’eVT(o)Tﬁ. (C.10)

Clearly, the natural parameter 7 is given by the gradient terms in above updates. We can easily
write the product of ¢; and p as another Gaussian and in fact this will be our intermediary prior.
The last exponential term will vary depending on how we compute the gradients.
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