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ABSTRACT
We address the problem of predicting aggregate vote outcomes (e.g.,
national) from partial outcomes (e.g., regional) that are revealed
sequentially. We combine matrix factorization techniques and gen-

eralized linear models (GLMs) to obtain a flexible, efficient, and

accurate algorithm. This algorithm works in two stages: First, it

learns representations of the regions from high-dimensional his-

torical data. Second, it uses these representations to fit a GLM to

the partially observed results and to predict unobserved results. We

show experimentally that our algorithm is able to accurately predict

the outcomes of Swiss referenda, U.S. presidential elections, and

German legislative elections. We also explore the regional repre-

sentations in terms of ideological and cultural patterns. Finally, we

deploy an online Web platform (www.predikon.ch) to provide real-

time vote predictions in Switzerland and a data visualization tool

to explore voting behavior. A by-product is a dataset of sequential

vote results for 330 referenda and 2196 Swiss municipalities.
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1 INTRODUCTION
The past decade has seen the emergence of several open-government

initiatives for the increase of administration transparency through

the publication of governmental data. These data are of great in-

terest to parties, companies, sub- and supra-government entities,

researchers, and citizens. In particular, the results of referenda and

election ballots in municipalities, districts, states, and countries

are valuable for understanding the structure and the dynamics of

politics.

In this paper, we address the problem of vote prediction when

only partial results are available. The ability to predict the out-

come of votes both before and during ballot counting is relevant

to political parties, interest groups, polling agencies, news outlets,

government authorities, and interested citizens. These predictions
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help uncover voting patterns, e.g., to identify swing regions, to

understand voting behaviours, and to detect fraud. Political parties

and interest groups can enhance their campaigning efforts. Polling

agencies and news outlets can optimize their surveying efforts. Au-

thorities can monitor the smooth functioning of the voting process.

We focus on national vote predictions during the ballot counting,

i.e., after all eligible voters have cast their ballots, as government of-

ficials start count the valid votes in each region. We predict national

results by using sequential regional results, and we seek to obtain

accurate predictions as early as possible, i.e., with a minimum num-

ber of regional results. Typically, less populated regions release their

official counts earlier than more populated ones. Regions where

remote voting is allowed release their results earlier than regions

where this is not allowed. In some countries, for example in the

U.S., some regions vote earlier than others by design. We will show

that our model is able to exploit the correlations between regions

and between votes to obtain accurate early predictions.

Switzerland offers a fascinating laboratory for vote prediction

due to its direct-democracy system. Swiss citizens are called to

vote four times a year on referenda and popular initiatives [29, 30].

As a result, the amount and frequency of voting data produced in

Switzerland remains unmatched by any other country. We take

Switzerland as an example to develop our methodology but, as

shown in Section 3, our algorithm can be applied to other countries

and in other settings.

In Section 2, we propose an algorithm to predict national vote

outcomes from a sequence of regional vote results. Our model has

two components: First, it learns the correlations between regions

and between votes from historical data by using singular value

decomposition (SVD). Second, after observing at least one regional

result for a new vote, it uses the SVD as input features to a gen-

eralized linear model (GLM) to predict the unobserved regional

results. The national outcome is then easily obtained by weighted

aggregation of the predicted and the observed regional results. The

SVD, computed only once on the historical data, is inexpensive in

terms of complexity and enables interpretation. By using different

likelihoods in the GLM, we gain flexibility in predicting binary

outcomes (for votes) or categorical outcomes (for elections).

For Swiss votes, where people must answer "Yes" or "No" on each

ballot, we show that a Gaussian and a Bernoulli likelihood provide

the best performance. We also explore what the SVD offers in terms

of interpretation of voting patterns. Furthermore, we show that we

can predict the outcome of the popular vote of a U.S. presidential

election by casting this problem as a binary choice between two

candidates. We predict the outcome of parliamentary elections in

Germany, where people must choose between five political parties,

using a categorical likelihood. We describe our experiments on

state-level and district-level results in Section 3.
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Table 1: List of GLMs. The softmax function is denoted by S.

Distrib. Link д θ µ D

N(µ,σ 2) Identity θ = µ µ = x⊺w R
N(µ, Σ) Identity θ = µ µ = Xw RK

Ber(µ) Logit θ = logit(µ) µ = σ (x⊺w) [0, 1]

Cat(µ,K) Inv. softmax θ = S−1(µ) µ = S(Xw) [0, 1]K

We also deploy a Web platform available to the general public to

provide vote prediction for Switzerland. Using an API developed by

the Swiss government, we are able to make real-time predictions

during the official counting with partial regional results. We also

provide a data-visualization tool to explore voting patterns and to

understand how our model makes predictions. We describe our

platform in Section 4.

In summary, our contributions are as follows: We propose an

efficient, flexible, and accurate algorithm for predicting the national

outcome of a referendum or an election from early regional results.

We curate a new dataset of sequential vote results in Switzerland,

covering 330 votes and 2 196 regions between 1981 and 2020. We

deploy an interactive Web platform to display real-time vote pre-

dictions in Switzerland, together with tools to explore and visualize

our dataset. The data and the code are available on github.com/indy-

lab/submatrix-factorization and the Web platform is available on

www.predikon.ch.

2 METHODOLOGY
2.1 Generalized Linear Models
Generalized linear models (GLMs) are probabilistic models whose

likelihood belongs to the exponential family. Let x ∈ RD be someD-
dimensional features,w ∈ RD be some D-dimensional parameters,

andy ∈ D be an observation in a given domainD. Leth(y) ∈ R be a

scaling factor, θ B x⊺w ∈ R be the natural parameter, andA(θ ) ∈ R
be the log-partition function. Then, the likelihood of a GLM is

p(y |w,x) = h(y) exp {yθ −A (θ )}. (1)

Point-wise predictions are obtained from the mean parameter

µ = E[y] = A′(θ ) = д−1(θ ),

where the invertible function д : D → R is called the link function.

This function links the natural parameter and the mean parameter.

The choice of link function depends on the choice of distribution in

the GLM. Equation (1) can be easily generalized toK outputsy ∈ D

(e.g., for multi-party elections) by setting the domain D to be K-
dimensional. One advantage of GLMs is that they can be efficiently

fit to data by using convex optimization methods [7]. In Table 1,

we summarize four popular GLMs and their corresponding link

functions, natural parameters, mean parameters, and support of д.
We will use these models in our algorithm to predict referenda and

elections, as described in the next sections. We refer the curious

reader to Murphy [24, Chapter 9] for a detailed introduction to

GLMs.

	votes
	regions

Figure 1: Decomposition of the vote matrix Y into the fully
observed sub-matrix YV and the new vote yV+1, whose re-
sults arrive sequentially. The (V + 1) votes are chronologi-
cally ordered and the R regions are arbitrarily ordered.

2.2 Problem Setup
Let Y ∈ RR×(V+1) be the matrix of (V + 1) regional vote results in R
regions, where a result is typically a fraction of votes. We assume

the columns to be in chronological order. For a new, unobserved

voteV + 1, we sequentially observe entries of the last column
1
in Y ,

which we denote by yV+1. Let YV ∈ RR×V be the sub-matrix of

all observed, historical results up to vote V . Denoting the set of

consecutive integers by [R] B {1, 2, . . . ,R}, we define the set of
observed indices for the new vote as

O = {r : r ∈ [R] and yr,V+1 ∈ R},

and the set of unobserved indices (corresponding to values to be

predicted) as

U = {r : r ∈ [R] and yr,V+1 ≡ ∅}.

Let y(O)

V+1 and y
(U)

V+1 denote the observed and unobserved entries

ofyV+1, respectively. Our task is to predict themissing entriesy(U)

V+1
from YV and y(O)

V+1 only. Figure 1 depicts the structure of the ma-

trix Y .
To predict the missing entries of y(U)

V+1, Etter et al. [15] use stan-

dard matrix factorization with alternating least-squares (ALS) to

minimize the non-convex loss based on the Frobenius norm

min

A,B

Y (O) −

(
ABT

)(O)

F
, (2)

where A ∈ RR×D and B ∈ RV×D
are two matrices of latent dimen-

sion D ∈ N>0, and where superscript (O) denotes that, in this case,

only the observed entries are kept. With ALS, each iteration is ex-

pensive, and there are neither convergence guarantees nor explicit

convergence rates [4, 19]. According to the Eckart-Young-Mirsky

Theorem [13], the optimal solution to Equation (2) is the SVD,

which is only computable if Y (O) = Y . We devise a more effective

algorithm motivated by the special structure of this collaborative

filtering problem[15].

2.3 Algorithm
Our algorithm works in four steps: First, the fully-observed sub-

matrix YV is decomposed using SVD as

YV ≈ UΣV ⊺, (3)

1
This problem can be trivially generalized to multiple unobserved

columns {yV+1, yV+2, · · · }.

https://www.github.com/indy-lab/submatrix-factorization
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where the diagonal matrix Σ ∈ RD×D
stores the singular values,

and where the matrices U ∈ RR×D and V ∈ RV×D
store the D

left and right singular vectors with the highest singular values,

respectively.

Second, we compute the projection of the regions into the vote

space as

X = YVV = UΣ, (4)

where the matrix X ∈ RR×D stores D-dimensional representations

of the regions. We explore these representations in more detail

in Section 3. These two steps are performed offline, i.e., they are

performed once.

Third, we use the observed results of a new vote yV+1 and the

representations of observed regions in X to fit a GLM p. We find

the maximum likelihood estimate w∗ ∈ RD by minimizing the

regularized negative log-likelihood of model p in Equation (1), with

regularization parameter λ ∈ R,

ℓp (w ;X ,yV+1) = −
∑
r ∈O

logp(yr,V+1 |w,xr ) + λ∥w ∥2
2
, (5)

whereyr,V+1 ∈ R is the result of the r -th (observed) region, andxr ∈

RD is the r -th row of the representation matrix X corresponding

to the representation of the r -th region.

Finally, we predict the unobserved regions of the new votey(U)

V+1 ∈

R |U |
as the mean of the GLM p using the link function д. From the

optimal parametersw∗, we compute

y(U)

V+1 := д
−1

(
X (U)w∗

)
, (6)

where X (U) ∈ R |U |×D
are the representations of the unobserved

regions. The prediction for the national outcome is then the average

of y(O)

V+1 and y(U)

V+1, weighted by the population of each region r .
We summarize these steps in Algorithm 1.

Algorithm 1 SubSVD-GLM

Input: Sub-matrix YV , partial results yV+1, and GLM p.

Output: Prediction of unobserved results y(U)

V+1.

1: Decompose YV ≈ UΣV ⊺ . ▷ Equation (3)

2: Project X = UΣ. ▷ Equation (4)

3: Optimizew∗ = argminw −ℓp (w ;X ,yV+1). ▷ Equation (5)

4: Predict y(U)

V+1 = д
−1

(
X (U)w∗

)
. ▷ Equation (6)

To predict the outcomes of referenda and elections, we use the

GLMs described in Table 1. For referenda, we use univariate Gauss-

ian and Bernoulli likelihoods. For elections, we use multivariate

Gaussian and categorical likelihood. When a univariate Gaussian

likelihood is used, the optimal parametersw∗ can be learned (step

3 of Algorithm 1) in closed form with least-squares

w∗ =
(
X (O)⊺X (O) + λID

)−1
X (O)⊺y(O)

V+1, (7)

where X (O) ∈ R |O |×D
are the representations of the observed

regions, y(O)

V+1 ∈ R |O |
are the observed entries of the new vote,

and ID is a D-dimensional identity matrix. In general, we make

the algorithm more efficient by reusing the optimal parametersw∗

learned with |O| observations when new observations arrive.

Although this algorithm is intuitive, considering the particu-

lar structure shown in Figure 1, its general performance is not

obvious. In standard matrix factorization, defined in Equation (2),

bothA and B are learned together. Our algorithm fixesA to be equal

to X = UΣ, at the expense of adding some constraints, but with

the benefit of computational complexity and identifiability gains.

In terms of identifiability, our regularized negative log-likelihood

is strictly convex, which now guarantees a unique global optimum.

To limit computational cost, we factorize the matrix YV only once

and reuse its decomposition for each new observation(s) in yV+1.
Computing one SVD has complexity O(RD2), as typically D ≤ R.
The optimization procedure (step 3) can be performed efficiently,

e.g., in O(n(|O|D + D3)) for n iterations of Newton’s method. With

a univariate Gaussian likelihood, computing the least-squares solu-

tion has asymptotic complexityO(|O|D2+D3), which is dominated

by the |O|D2
term, as typically D < |O|. Finally, predicting unob-

served values is only a (function of a) matrix-vector multiplication

of complexity O(|U|D).
Elections are more complex than referenda because they have

categorical outcomes. Let K be the number of possible outcomes

(for example K political parties). The vote result matrix becomes

a tensor YV ∈ RR×V×K
. To apply our algorithm, we concatenate

the results of each party to collapse the last dimension. This yields

a matrix YV ∈ RR×VK
that can be decomposed using SVD to

obtain representations of regions (steps 1 and 2). For an election,

the regional results are stored in a matrix yV+1 ∈ RR×K , and we

use multivariate Gaussian or categorical likelihoods in the GLM to

model the multiple outcomes (steps 3 and 4).

2.4 Probabilistic Interpretation
Voting data have the special property that the sum of all possible

outcomes in a given region is equal to 1. The outcome p ∈ [0, 1]

of a referendum is the probability p that it is accepted (and the

probability 1−p that it is rejected). The suffragep ∈ [0, 1]K obtained

by K political parties in an election describes the probability mass

function p(k) that the k-th party is elected. As a result, we provide a

probabilistic interpretation of outcomes of referenda and elections.

Let P
(i)
rv ∼ Bernoulli(prv ) be a random variable representing

the vote cast by voter i in region r on referendum v . As voting is
anonymous, we do not observe individual votes, rather the average

vote in each region

1

Nr

Nr∑
i=1

P
(i)
rv ,

where Nr is the number of voters in region r , and whose expec-

tation is prv . By decomposing the result matrix Y = AB⊺ as in

Equation (2), we posit that the parameter of the random variables

describing individual voters is a product of latent features of re-

gions and votes prv = a
⊺
r bv , with ar ,bv ∈ RD . In Equation (3)

and Equation (4), our algorithm learns the latent features of the

regions ar = (UΣ)r = xr from historical data. In Equation (5), it

learns the latent features of the votes bv = argminb −ℓp (b;X ,yv )
as the parameters of a GLM p.

So far, we have considered that each region has the same number

of voters. If we have access to data about the number of voters in



Table 2: Description of datasets used in our experiments.

Country Type Region R V K Period

Switzerland Binary Munic. 2 196 330 – 1981–2020

U.S. Binary State 50 11 – 1976–2016

Germany Categ. State 16 6 5 1990–2009

Germany Categ. District 538 5 5 1990–2005

each region (e.g., the number of valid votes, the number of eligi-

ble voters, or the population), we can include this information by

replacing the regularized log-likelihood in (5) by

− ℓp (w ;X ,yV+1) =
∑
r ∈O

Nr logp(yr,V+1 |w,xr ) + λ∥w ∥2
2
, (8)

where Nr ∈ R is a count related to the number of voters in re-

gion r . We refer to the variation of the algorithm that uses this

log-likelihood as weighted. We refer to the variation of the algo-

rithm that uses the log-likelihood in (5) as unweighted. A simi-

lar argument can be trivially made for elections by letting P
(i)
rv ∼

Categorical(prv ,K) be a random variable describing the vote cast

by voter i in region r on vote v for K political parties.

2.5 Limitations
By design, our approach suffers from the cold-start problem of

collaborative filtering [19]. We can make predictions only when at

least one past observation is available, i.e., when |O| = 1. To bypass

this problem, Etter et al. [15] include features of the regions, such

as the geographical location, the population size, and the elevation,

and features of the votes, such as the voting recommendation by

political parties. These features are, however, not systematically

and programmatically available, making it difficult to use them in

a real-world system such as the one we describe in Section 4.

Our approach also makes the hypothesis that regional and vote

representations are static over time. In particular, the algorithm

learns the regional representations over the whole training set. The

latest results might, however, provide more information than older

results. To bypass this problem, we could weigh the SVD by using

a sliding window or by exploiting a temporal SVD algorithm [1] to

capture the dynamics of the voting process.

3 EXPERIMENTS
We evaluate our algorithm on the four datasets

2
described in Ta-

ble 2. The outcomes for the Swiss referenda and for U.S. presidential

elections are binary. For Switzerland, this corresponds to the refer-

endum being accepted or rejected. For the U.S. this corresponds to

one presidential candidate being elected over the other. The out-

comes for the German legislative elections are one of five categories,

corresponding to five political parties.

For the binary datasets, i.e., for Switzerland and for the U.S., we

use a GLM p with univariate Gaussian and Bernoulli likelihoods.

As data about the number of valid votes and about population

counts are available for these two datasets, we use a likelihood with

weighting, as defined in (8). For the categorical datasets, i.e., for
Germany, we use a GLMwith multivariate Gaussian and categorical

2
The data and the code are available on github.com/indy-lab/submatrix-factorization.

likelihoods. As data about population counts were not available

in this case, we use a likelihood without weighting, as defined in

in (5).

3.1 Evaluation
For each dataset, we find the best hyperparameters using the train-

ing set only, as explained in details in Appendix A. To evaluate the

performance of our algorithm, we compute the mean absolute error

(MAE) and the accuracy on the national results.

We first describe the error metrics used for the binary outcome

case then extend them for multiple outcomes, e.g., when different

parties can be voted. Let y∗ ∈ RR be the true regional results and

let y B yV+1 ∈ RR be a prediction. The true national outcome

y∗ ∈ R is defined as

y∗ B
1

N

∑
r ∈[R]

Nry
∗
r , (9)

where N =
∑
r ∈[R] Nr is the total number of voters. The predicted

national outcome y ∈ R is defined as

y B
1

|U|

∑
r ∈U

Nryr +
1

|O|

∑
r ∈O

Nry
∗
r , (10)

where the prediction yr in some observed region r ∈ O equals the

true outcome y∗r . Then, the MAE and the accuracy of the national

prediction are computed as

MAE(y,y∗) = |y − y∗ |, (11)

Acc(y,y∗) = 1{y ≥ 0.5 and y∗ ≥ 0.5}

+ 1{y < 0.5 and y∗ < 0.5}, (12)

where 1{·} is the indicator function.
The MAE enables us to evaluate how far a predictor is from the

exact percentage value, whereas the accuracy enables us to evaluate

if the outcome is predicted correctly. For K outcomes, the true and

the predicted outcomes are vectors y∗ ∈ [0, 1]K and y ∈ [0, 1]K ,

respectively, and the MAE in (11) is simply the ℓ1-norm of the dif-

ference between the two vectors. As the accuracy is not defined for

multiple outcomes, we compute the average displacement (or Spear-

man’s footrule) [11]. Let p : [K] → [K] be a permutation map from

a party to its rank for the predicted order, and let p∗ : [K] → [K]
be a permutation map for the true order. The average displacement

is then computed as

D(p,p∗) =
1

K

K∑
k=1

|p(k) − p∗(k)|. (13)

This measures the average position shift between the true rank and

the predicted rank of each party.

We train our algorithm on data up to vote V and make predic-

tions on vote V + 1 to evaluate our algorithm. To simulate a real

setting where results arrive sequentially, we incrementally add re-

gions to the set of observed regions O and average the MAEs on

several reveal orders to obtain error bars. Current political fore-

casting methods for real-time estimation of the outcomes (e.g., by
media outlets) rely mostly on weighted averages of the regional

results on the day of the vote. More sophisticated methods (devel-

oped, e.g., by polling agencies) can also be used, but their technical

details are not available. Hence, we compare our algorithm against

https://www.github.com/indy-lab/submatrix-factorization
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Figure 2: MAE (top) and accuracy (bottom) averaged over 26
Swiss referenda and 100 reveal orders each.

weighted averaging as a baseline. For the binary classification task,

we also compare against standard matrix factorization (MF) trained

with alternating least squares, as proposed by Etter et al. [15] and

as formulated in Equation (2). For the multiple outcome task, we

restrict our comparison to weighted averaging.

3.2 Swiss Referenda
We collect a dataset ofV = 330 referenda in R = 2196municipalities

(the regions are here the municipalities) between 1981 and 2020.

We start with a training set ofV = 300 votes and report the average

performance on the next 26 votes with 100 reveal orders each. As

several votes can occur on the same day, we make sure that only

past votes are used in the training set. In Section 4, we analyze

in depth the last four votes (two votes on two dates) for which

we have real, sequential data. The ranges of hyperparameters are

given in Appendix A.1, and the best combination for the Bernoulli

likelihood is λ = 0.01 and D = 25.

In Figure 2, we show the MAE and the accuracy of our algorithm

to predict national results from partial municipal results. The two

likelihoods used for the GLM provide equal performance, and we

report only the performance of the Bernoulli likelihood for clar-

ity. In terms of MAE (top), MF outperforms the weighted average

baseline and our algorithm outperforms MF for every number of

observed regions from 1 to 1000. The difference becomes marginal

when more than 1000 results are observed, which suggests that

a good approximation of the national result can be obtained by

simply averaging the observed results when more than 50% of the

results have arrived. Nevertheless, in this synthetic setting (the re-

veal order is randomized) our approach gains only one percentage

point at best over the baseline. In Section 4, we will show that the

gain becomes substantial with real data, i.e., with the actual reveal

order. In terms of accuracy (bottom), our algorithm predicts the

final outcome with 95% accuracy with 10 observed regions only,

outperforming the two baselines by 5 percentage points. The accu-

racy of our algorithm reaches 100% after observing 200 municipal

results, i.e., after observing 10% of all municipalities.

“Rö
stig

rab
en”

French
German
Italian
Romansh

Figure 3: Projection of Swiss municipalities on the first two
singular vectors of referendummatrixY . Municipalities are
colored according to their language.

Wallis

Ticino

Coloring by Language

French
German
Italian
Romansh

Coloring by Canton

Figure 4: Projection of Swiss municipalities from referen-
dum matrix Y with t-SNE. (Left) Municipalities are colored
according to their language. (Right) Municipalities are col-
ored according to their canton (26 cantons). The bilingual
canton of Wallis is split into two clusters. The only Italian-
speaking canton of Ticino is isolated from the other clusters.

We explore the patterns in the feature matrix X = UΣ obtained

from (4). In Figure 3, we plot the first two columns of X , i.e., a
projection of the municipalities on the first two singular vectors of

the vote representation. This plot, popularized by Etter et al. [14],

shows two clear clusters of municipalities corresponding to their

language. It also exhibits the infamous Röstigraben, a cultural separa-
tion between French-speakingmunicipalities and German-speaking

municipalities. In addition, we show in Figure 4 a projection of the

result matrix Y by using t-SNE [22]. The language separation is

also clearly visible, with French-speaking municipalities on the left

of the plot and German-speaking municipalities on the right. The

group of municipalities are further subdivided into smaller clusters

corresponding to the canton (states of the Swiss confederation)

that they belong to. Most cantons are uni-lingual in Switzerland,

but a few are bilingual. The most notable among them is Wallis,

and interestingly enough, we observe that it is separated into two

distinct clusters. The French-speaking municipalities in Wallis are

closer to other French-speaking municipalities, and vice versa for

the German-speaking municipalities. The municipalities of the only

Italian-speaking canton, Ticino, form their own cluster.



3.3 U.S. Presidential Election
The U.S. presidential election takes place every four years. We

obtain a dataset about the state-level ballots between 1976 and

2016 [23]. In the spirit of Nate Silver’s FiveThirtyEight [28], we

evaluate the performance of our algorithm at predicting the result

of the U.S. presidential election in 2016. The U.S. presidential elec-

tion relies on the electoral-college system, which adds one level of

complexity to the prediction because (1) the state-level results are

quantized to an integer number of delegates and (2) the candidate

who wins the majority of votes in a state wins all the delegates of

that state. This (non-linear) winner-take-all rule requires further

modeling assumptions and is out of the scope of this paper. Instead,

we focus on predicting the results of the popular vote.

We transform the outcome of the election into a binary outcome

of Democratic candidate and Republican candidate. In all these

elections, the results of other parties, e.g., the Green party and in-

dependent candidates, are insignificant compared to the two major

U.S. parties. This dataset contains the results of V = 11 votes in

R = 51 regions (50 states and the District of Columbia) between

1976 and 2016. As the number of votes is small, we train our algo-

rithm on all votes up to 2012 (V = 10) to set the sub-matrix YV ,

and we predict the state-level results and the national results of

the 2016 election. We report the averaged performance on 10000

random reveal orders. The ranges of hyperparameters are given in

Appendix A.2, and the best combination for the Bernoulli likelihood

is λ = 0.01 and D = 7.

In Figure 5, we show the MAE and the accuracy of our algorithm

in predicting this election. The two likelihoods used for the GLM

provide equal performance, and we report only the performance

of the Bernoulli likelihood for clarity. In terms of MAE (top), our

algorithm and MF outperform the weighted average baseline after

observing the results in two regions. In terms of accuracy (bottom),

our algorithm outperforms both MF and the weighted average

for any number of observation. All models have an accuracy of

41% after observing the result of one region. This is because the

Democratic candidate won in 21 of 51 regions (41%) and won the

popular vote.

3.4 German Legislative Election
German legislative elections take place every four years. We obtain

two datasets [25] of regional results with R = 16 states (1990–2009)

and R = 538 districts (1990–2005). After 2005 (for the districts) and

2009 (for the states), the data are regrettably not publicly available

any longer. We keep K = 5 political parties, corresponding to the

five major parties in Germany
3
for which we have data over the

whole period. The datasets cover V = 6 votes for state-level results

and V = 5 for district-level results. As there are multiple outcomes,

we use a categorical likelihood to predict the results of the five

parties.

For the state-level results, we train our algorithm on all votes

up to 2005 (V = 5) to set the sub-matrix YV , and we predict the

national results of the 2009 election. For the district-level results,

we train our algorithm on all votes up to 2001 (V = 4), and we

predict the national results of the 2005 election. In Figure 6, we

3
CDU/CSU (christian democracy), SPD (social liberalism), FDP (conservative liberal-

ism), the Green party (ecological), and the Left party (radical left).

0

5

10

M
A
E
[%
]

U.S. Presidential Election 2016

Averaging
MF
SubSVD-Bernoulli

0 10 20 30 40 50
Number of observed states |O|

40

60

80

100

Ac
cu
ra
cy

[%
]

Figure 5: MAE (top) and accuracy (bottom) of the popular
vote of the U.S. presidential election in 2016.

0

2

4

6
M
A
E
[%
]

German Election by State German Election by District

Averaging
SubSVD-Categ.

5 10 15
Number of observed states |O|

0.0

0.5

1.0

Av
er
ag
e
D
isp

la
ce
m
en
t

100 101 102

Number of observed districts |O|

Figure 6: MAE (top) and average displacement (bottom) of
German legislative elections at state level in 2009 (left) and
district level in 2005 (right).

show the performance of our algorithm in predicting these two

elections. For both datasets, our algorithm outperforms the baseline

already after a small number of observations. The performance for

the prediction of the national results when using the fine-grained

district-level results is better than when using coarser-grained state-

level results. Remarkably, after observing the results in 10 districts

(Figure 6, top right), i.e., approximately the average number of

districts per state, the MAE reaches 1%, which is four times better

than the MAE obtained after predicting the national outcome from

one state (Figure 6, top left). A similar observation can be made for

the average displacement. This suggests that the finer the level of

granularity of regions is, the better the predictive performance is,

even if the observed results are obtained from the same number of

voters.

Like with Switzerland in Section 3.2, we explore the representa-

tions of the regions contained in the feature matrix X for Germany.
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In Figure 7, we plot the first two columns of X , i.e., a projection
of the districts on the first two singular vectors of the vote repre-

sentations. We color the points according to the first party elected

in the corresponding districts (left). With no exception, either the

CDU/CSU or the SPD is elected. The two clusters are each separated

in half: The districts on the right side of their cluster vote inmajority

for the CDU/CSU. For the lower cluster, those districts also belong

to Southern Germany. The districts on the left side of this clus-

ter (which vote in majority for the SPD) belong to North-Western

Germany.

The CDU/CSU and the SPD have the top two ranks in all districts.

Therefore, it is interesting to color the points according to the party

in third place. This clearly separates the two clusters. The cluster at

the top corresponds to the Left party.
4
The top cluster contains only

districts that belong to historical East Germany (formerly the GDR,

before the reunification in 1990), such as Potsdam, Leipzig, and

Dresden. The cluster at the bottom corresponds to the Green party

and the FDP and contains only districts that belong to historical

West Germany (the former BDR), such as Frankfurt, Munich, and

Hamburg. Interestingly, Berlin lies in the cluster that corresponds

to historical East Germany, but seems slightly isolated.

4 DEPLOYED SYSTEM
We deploy aWeb platform to provide real-time predictions for Swiss

referenda
5
. Four Sundays a year, Swiss citizens are called on to vote

on at least one item in a referendum. These items can cover a broad

range of topics, from joining the European Union to subsidizing

railways and roads, from banning the use of fossil fuels to cutting

taxes, and even forbidding Swiss farmers to remove horns from

cows and goats. A month prior to a referendum vote day, eligible

voters receive official ballots, together with useful documentation.

To cast their vote, they can either send their ballot by post or bring

it to the ballot office on the referendum vote day, up to 11:59am.

Starting at 12pm, each municipality is in charge of counting both

the remote ballots and the ballots they collected on the same day.

4
The three exceptions with CDU/CSU voted the Left party in second place.

5
The platform is available on www.predikon.ch.

Table 3: True outcomey∗nat, earliest predictionynat, and abso-
lute difference ∆ = |y∗nat − ynat | for referenda with real data.

Date Item y∗
nat

[%] ynat [%] ∆

May 19 Tax Reform 66.38 67.90 1.52

May 19 Weapon Regulation 63.73 63.52 0.21

Feb 2 Affordable Houses 42.95 41.57 1.38

Feb 2 Ban on Homophobia 63.09 62.94 0.15

Once they have finished counting, they report the result to their

canton whose administration communicates the official count.

4.1 Implementation Details
In 2019, the Swiss Federal Statistical Office released a public API

to access vote data, both historical and real-time, for all munici-

palities in a standardized format [31]. This enabled us to obtain

sequential results in all municipalities on the referendum vote days

and made it possible to use our algorithm to predict the outcome

of referenda starting at 12pm. We use the dataset described in Ta-

ble 2 for Switzerland, which contains R = 2196 municipalities. We

predict the outcome of two items on May 19, 2019, using V = 326

votes and two items on February 2, 2020, using V = 328 votes
6
. We

summarize these four items in Table 3. The turnout was about 44%

on May 19 and about 42% on February 2020. For each referendum,

about 2.2 million valid ballots were counted.

For a vote V + 1, we use the historical data up to vote V to learn

the feature matrix X from the sub-matrix YV . We use a Bernoulli

likelihood to define our GLM with D = 25 latent dimensions and a

regularization factor λ = 0.01. We fetch municipal results from the

API every two minutes
7
. If new results are available, we learn the

optimal parametersw∗ by optimizing the negative log-likelihood

using Newton’s method, and we predict the unobserved munic-

ipal results as y(U)

V+1 = σ (X (U)w∗). We predict the national out-

come ynat ∈ [0, 1] by aggregating our prediction of unobserved

results U with the observed results O as

ynat =
1

N

( ∑
r ∈U

N
(U)
r y

(U)

r,V+1 +
∑
r ∈O

N
(O)
r y

(O)

r,V+1

)
, (14)

where N
(U)
r is the number of valid ballots in municipality r from

the previous vote (used as proxy for the current vote), N
(O)
r is

the number of valid ballots in municipality r for the current vote,

and N =
∑
r ∈U N

(U)
r +

∑
r ∈O N

(O)
r is the total number of valid

ballots. As the number of unobserved results |U| tends to 0 with

time and the number of observed results |O| tends to the total

number of regions R, the prediction for the national outcome ynat
converges to the true outcome y∗

nat
∈ [0, 1].

4.2 Real-Time Predictions
In Figure 8, we show the evolution of our predictions (solid red line),

together with the weighted averaging (solid black line), and the

6
The two referendum vote days between May 19, 2019, and February 2, 2020, were

replaced by the Swiss legislative elections in Fall 2019. The referendum vote days after

February 2, 2020, were cancelled due to the COVID-19 crisis in Spring 2020.

7
Schedule suggested by the Swiss Federal Statistical Office.

http://www.predikon.ch
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Figure 8: Evolution of predictions (red) and weighted aver-
aging (black) on real, sequential data for the two referenda
of February 2, 2020, together with the progress of the ballot
counting (blue).

progress of the ballot counting (solid blue line) for the two referenda

on February 2, 2020. The ballot counting starts at 12pm and ends

at 4pm, after all municipalities reported their results Looking at

the trajectory of the counting progress, the jumps occurring at

several timestamps correspond to the publication of the results of

the whole canton of Wallis and the city of Basel at 12:35pm, of Thun

at 2:10pm, of Geneva at 2:40pm, and of Bern at 3pm, all of which

are major cities in Switzerland. The large municipality of Zurich is

split into nine districts that published their results independently,

thus diluting its effect on the counting.

At 12pm, using the results of 531 municipalities (23.9% of all mu-

nicipalities) representing 13.2% of the total population, we predict

41.57% for the "Affordable Housing" and 62.94% for the "Ban on

Homophobia". This corresponds to a mean absolute error of 1.38%

and 0.15% to the true outcome, respectively. The weighted average

for the current count varies up to a difference of 6.5% and 4.5%,

respectively, whereas our prediction is stable over time. To pro-

vide a robust estimation of the final outcome, our algorithm takes

advantage of the correlation across municipalities and votes. The

performance of our approach for the two referenda of May 19, 2019,

is similar; but we do not show them
8
, as early counting data were

not available due to a bug on the API side (they published the first

results at 12:35pm). Furthermore, the results of the nine districts

of Zurich, which cumulatively form the largest municipality in

Switzerland, were incorrectly reported on that day. Consequently,

we could not reliably use the results in our algorithm. We report

only the earliest prediction, made at 12:40pm, in Table 3.

5 RELATEDWORK
We base the present paper on the work of Etter et al. [14] and build

on their approach proposed in [15]. They combine matrix factoriza-

tion and Gaussian processes (GP) to understand what features of the

8
The interested reader can access these predictions on our Web platform.

votes and of the municipalities contribute the most to the predictive

performance. They develop an expectation-maximization algorithm

to learn both latent features and the GP parameters jointly. They

show that the geographical location of municipalities is the most

important feature for making predictions, an aspect that is in part

captured by the feature matrix X of Equation (4) in our algorithm

and illustrated in Figure 3: Municipalities that are geographically

close tend to speak the same language. They also show that they

are able to make accurate predictions of Swiss referenda. In compar-

ison, our method is more efficient, as it learns the latent features of

municipalitiesX through singular value decomposition offline, and

it learns the latent features of a vote through a GLM. The GLM also

provides more flexibility: Our algorithm could conceivably be used

to make prediction for other types of observations, e.g., count data,
and works for non-binary outcomes. We developed our algorithm

with applicability in mind. Our main goal was to make real-time

predictions for Swiss referenda, with all the constraints that come

with this problem.

The problem we address, i.e., predicting unobserved entries of a

new column of a matrix from partial observations of that column,

is most similar to the problem of missing-data imputation. The

use of SVD for data imputation has been studied in the context of

genomics [17, 32]. In gene matrices, missing entries are common,

and the authors propose an algorithm based on SVD to impute

missing data. Their algorithm iteratively computes the SVD of an

approximation to the full matrix and predicts the missing values

with a regression by using the non-missing values to refine the ap-

proximation. An extensive literature review of predictive methods

for data imputation is available in Bertsimas et al. [5]. Incremen-

tal SVD revisions have been studied in the context of computer

vision [8] and recommender systems [9]. In this latter work, the

author proposes algorithms to compute the SVD of a matrix when

new columns arrive sequentially and are corrupted by some noise

(e.g., some entries are missing). Their solution is equivalent to our

SubSVD-Gaussian algorithm without regularization, i.e., λ = 0, for

which a closed form solution is provided in Equation (7).

A whole body of work in the political science community ex-

ists on election forecasting [21], i.e., predicting the outcome of an

election before it happens. The seminal work of Bean [2], who first

studied this problem in 1948, looked at using historical data to find

U.S. states that were the most predictive of the national outcome.

Statistical models for election forecasting have since been devel-

oped in many contexts for Germany [33], France [3], the U.K. [16],

and the U.S. [18, 27]. The prediction of U.S. elections has been

popularized by the blogger and statistician Nate Silver in 2008 as

he predicted Barack Obama’s victory in the Democratic Party pri-

maries using a statistical model of historical data [6], and as he

predicted Barack Obama’s victory in the presidential election from

polling data [28]. In the computer science community, algorithms

for election forecasting have also been developed using social me-

dia data in Denmark [20], Finland [34], the U.S. [10, 26], and the

developing world [12]. To the best of our knowledge, except for the

work mentioned at the beginning of this section, we are the first

to study real-time outcome predictions of elections and referenda,

and to deploy a system for making predictions of Swiss referenda

in real-time.

http://www.predikon.ch


6 CONCLUSION
We have proposed an algorithm to predict national vote results from

regional results that are observed sequentially. Our approach learns

a representation for each region by factorizing the sub-matrix of

historical data and approximating the representation of a new vote

as the optimal parameters of a generalized linear model. The predic-

tions for unobserved results are obtained through the link function

of the GLM, and national predictions are obtained by aggregating

observed and unobserved regional results. We are able to predict

both referenda with binary outcomes and elections with categori-

cal outcomes. We have shown that our approach outperforms the

(weighted) average of partial results on three datasets of Swiss ref-

erenda, U.S. presidential elections, and German legislative elections.

We have explored the regional representations in their latent space

and have shown that they capture ideological and cultural patterns.

Finally, we have deployed a Web platform to provide real-time vote

predictions for Swiss referenda. Our algorithm is able to predict

the final outcome of four real votes with an absolute error of about

1% after observing only 13% of the ballots.

Future Work. We plan to further develop our approach in three

directions. First, Bayesian inference in our generalized linear model

would enable uncertainty quantification of our predictions in a

principled way. This could be beneficial for predictions, especially

during the early counting phase. Bayesian inference for GLMs has

been widely studied in the literature [24]. Second, our algorithm

is capable of making predictions only with at least one observed

regional result. In the spirit of Etter et al. [15], we plan to augment

our algorithm with features from the vote and the municipalities to

make predictions prior to referenda in Switzerland. One limitation

of their work lies in the lack of systematic availability of the fea-

tures they include in their model. In particular, every Swiss citizen

receives documentation about each referendum. These explanatory

documents provide a valuable source of information about a vote,

one that could be incorporated in a predictive model. The actual

text of the proposed laws would provide another source of relevant

information. Finally, by collecting the sequential order by which

regional results arrive in Swiss referenda, we obtain data about the

true reveal order. We plan to explore whether the true sequential

order can be exploited to learn the schedule by which results arrive

and, therefore, further improve the earliest predictions.

ACKNOWLEDGMENTS
We thank Holly Cogliati-Bauereis, Vincent Etter, Julien Herzen, and

the anonymous reviewers for careful proofreading and constructive

feedback. We thank Corinne Straub of the Swiss Federal Statistical

Office for setting up the API and helping us understand their data.

REFERENCES
[1] R. Bamler and S. Mandt. Dynamic word embeddings. In Proceedings of the 34th

International Conference on Machine Learning-Volume 70, pages 380–389, 2017.
[2] L. H. Bean. How to predict elections. 1948.

[3] E. Belanger. Finding and using empirical data for vote and popularity functions

in France. French Politics, 2(2):235–244, 2004.
[4] R. M. Bell and Y. Koren. Scalable collaborative filtering with jointly derived

neighborhood interpolation weights. In Seventh IEEE International Conference on
Data Mining (ICDM 2007), pages 43–52. IEEE, 2007.

[5] D. Bertsimas, C. Pawlowski, and Y. D. Zhuo. From predictive methods to missing

data imputation: an optimization approach. The Journal of Machine Learning

Research, 18(1):7133–7171, 2017.
[6] M. Blumenthal. The poblano model, 2008. URL https://web.archive.org/web/

20090414152429/http://www.nationaljournal.com/njonline/mp_20080507_8254.

php. Accessed: 2020-02-13.

[7] S. Boyd and L. Vandenberghe. Convex optimization. Cambridge University Press,

2004.

[8] M. Brand. Incremental singular value decomposition of uncertain data with

missing values. In European Conference on Computer Vision, pages 707–720.
Springer, 2002.

[9] M. Brand. Fast online svd revisions for lightweight recommender systems. In

Proceedings of the 2003 SIAM International Conference on Data Mining, pages
37–46. SIAM, 2003.

[10] M. Choy, M. Cheong, M. N. Laik, and K. P. Shung. US presidential election 2012

prediction using census corrected Twitter model. arXiv preprint arXiv:1211.0938,
2012.

[11] P. Diaconis and R. L. Graham. Spearman’s footrule as a measure of disarray.

Journal of the Royal Statistical Society: Series B (Methodological), 39(2):262–268,
1977.

[12] N. Dwi Prasetyo and C. Hauff. Twitter-based election prediction in the developing

world. In Proceedings of the 26th ACM Conference on Hypertext & Social Media,
pages 149–158, 2015.

[13] C. Eckart and G. Young. The approximation of one matrix by another of lower

rank. Psychometrika, 1(3), 1936.
[14] V. Etter, J. Herzen, M. Grossglauser, and P. Thiran. Mining democracy. In

Proceedings of the second ACM Conference on Online Social Networks, 2014.
[15] V. Etter, M. E. Khan, M. Grossglauser, and P. Thiran. Online collaborative pre-

diction of regional vote results. In 2016 IEEE International Conference on Data
Science and Advanced Analytics (DSAA), 2016.

[16] F. Franch. (wisdom of the crowds) 2: 2010 uk election prediction with social

media. Journal of Information Technology & Politics, 10(1):57–71, 2013.
[17] T. Hastie, R. Tibshirani, G. Sherlock, M. Eisen, P. Brown, and D. Botstein. Imputing

missing data for gene expression arrays. 1999.

[18] R. Kennedy, S. Wojcik, and D. Lazer. Improving election prediction internationally.

Science, 355(6324):515–520, 2017.
[19] Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recom-

mender systems. Computer, 42(8):30–37, 2009.
[20] J. B. Kristensen, T. Albrechtsen, E. Dahl-Nielsen, M. Jensen, M. Skovrind, and

T. Bornakke. Parsimonious data: How a single Facebook like predicts voting

behavior in multiparty systems. PloS one, 12(9), 2017.
[21] M. S. Lewis-Beck. Election forecasting: Principles and practice. The British

Journal of Politics and International Relations, 7(2):145–164, 2005.
[22] L. v. d. Maaten and G. Hinton. Visualizing data using t-SNE. Journal of machine

learning research, 9(Nov):2579–2605, 2008.
[23] MIT Election Data and Science Lab. U.S. President 1976–2016, 2017. URL https:

//doi.org/10.7910/DVN/42MVDX. Accessed: 2020-02-06.

[24] K. P. Murphy. Machine learning: a probabilistic perspective. The MIT Press, 2012.

[25] Norwegian Centre for Research Data. German parliamentary elections,

2020. URL https://nsd.no/european_election_database/country/germany/

parliamentary_elections.html. Accessed: 2020-06-16.

[26] J. Ramteke, S. Shah, D. Godhia, and A. Shaikh. Election result prediction us-

ing Twitter sentiment analysis. In 2016 international conference on inventive
computation technologies (ICICT), volume 1, pages 1–5. IEEE, 2016.

[27] S. E. Rigdon, S. H. Jacobson, W. K. Tam Cho, E. C. Sewell, and C. J. Rigdon. A

Bayesian prediction model for the US presidential election. American Politics
Research, 37(4):700–724, 2009.

[28] N. Silver. Pollster ratings v3.0, 2008. URL https://fivethirtyeight.com/features/

pollster-ratings-v30/. Accessed: 2020-02-13.

[29] The Swiss Confederation. Democracy, 2019. URL https://www.ch.ch/en/

demokratie/. Accessed: 2020-02-04.

[30] The Swiss Confederation. Popular vote, 2019. URL https://www.admin.ch/gov/

en/start/documentation/votes.html. Accessed: 2020-02-04.

[31] The Swiss Federal Statistical Office (via opendata.swiss). Real-time data on refer-

enda on vote days, 2020. URL https://opendata.swiss/en/dataset/echtzeitdaten-

am-abstimmungstag-zu-eidgenoessischen-abstimmungsvorlagen. Accessed:

2020-02-11.

[32] O. Troyanskaya, M. Cantor, G. Sherlock, P. Brown, T. Hastie, R. Tibshirani, D. Bot-

stein, and R. B. Altman. Missing value estimation methods for DNA microarrays.

Bioinformatics, 17(6):520–525, 2001.
[33] A. Tumasjan, T. O. Sprenger, P. G. Sandner, and I. M. Welpe. Election forecasts

with Twitter: How 140 characters reflect the political landscape. Social science
computer review, 29(4):402–418, 2011.

[34] T. Vepsäläinen, H. Li, and R. Suomi. Facebook likes and public opinion: Predicting

the 2015 Finnish parliamentary elections. Government Information Quarterly, 34
(3):524–532, 2017.

https://web.archive.org/web/20090414152429/http://www.nationaljournal.com/njonline/mp_20080507_8254.php
https://web.archive.org/web/20090414152429/http://www.nationaljournal.com/njonline/mp_20080507_8254.php
https://web.archive.org/web/20090414152429/http://www.nationaljournal.com/njonline/mp_20080507_8254.php
https://doi.org/10.7910/DVN/42MVDX
https://doi.org/10.7910/DVN/42MVDX
https://nsd.no/european_election_database/country/germany/parliamentary_elections.html
https://nsd.no/european_election_database/country/germany/parliamentary_elections.html
https://fivethirtyeight.com/features/pollster-ratings-v30/
https://fivethirtyeight.com/features/pollster-ratings-v30/
https://www.ch.ch/en/demokratie/
https://www.ch.ch/en/demokratie/
https://www.admin.ch/gov/en/start/documentation/votes.html
https://www.admin.ch/gov/en/start/documentation/votes.html
https://opendata.swiss/en/dataset/echtzeitdaten-am-abstimmungstag-zu-eidgenoessischen-abstimmungsvorlagen
https://opendata.swiss/en/dataset/echtzeitdaten-am-abstimmungstag-zu-eidgenoessischen-abstimmungsvorlagen


Table 4: Ranges of hyperparameters for different datasets.

Country Region λ D

Switzerland Munic. {0.001, 0.01, 0.1} {10, 25, 100, 250}

U.S. State {0.001, 0.01, 0.1} {3, 5, 7}

Germany State {0.001, 0.01, 0.1} {3, 7, 11}

Germany District {0.001, 0.01, 0.1} {3, 7, 11}

A EXPERIMENTAL SETTING
We describe in details the experimental setting and the choice

of hyperparameters. As explained in Section 3, we evaluate the

predictive performance of our models and of the baselines after

observing a fraction of regional outcomes. For each dataset, we use

the training set as validation set to find the best hyperparameters

from a range of possible values. We preserve the temporal order of

the data, and we use the first V votes for training while testing on

the next vote V + 1. This simulates a real setting where we use all

available data prior to an election or referendum of interest.

For each test vote, we simulate several random reveal orders

of regional results. For the Swiss referenda, the U.S. presidential

election, and the German parliamentary election by district, we

simulate reveal orders on a logarithmic space. This emphasizes the

importance of early results, i.e., when a small number of results are

available, in the prediction performance. For the German parlia-

mentary election by states, the number of regions is small enough

(R = 16) to simulate reveal orders on a linear space.

We evaluate the performance of our models and of the baselines

with different combinations of the hyperparameters. The hyper-

parameters in our method are the ℓ2-regularization parameter λ
and the number of dimensions D of the latent factors. We report

in Table 4 the ranges of hyperparameters for each dataset and in

Table 5 the best combinations in terms of MAE. In our experiments,

we generally observed that the performance of an algorithm was

robust to different combinations of hyperparameters. In light of

Occam’s razor, we chose the simplest model, i.e., the lowest num-

ber of latent dimensions D and the lowest value of regularization

parameter λ, when different combinations reached equal values of

MAE.

Finally, we measure the performance of an algorithm given some

hyperparameters in terms of the MAE and the ℓ1-norm, as defined

in Equation (11) of Section 3. We use the MAE (and the ℓ1-norm) as

it measures the error in percentage points and provides, therefore,

some interpretability. For the binary datasets, i.e., for the Swiss

referenda and for the U.S. presidential election, we measure the per-

formance of a combination in terms of the MAE. For the categorical

datasets, i.e., for the German elections where we try to predict the

fractions of votes that parties obtain, we measure the performance

in terms of the ℓ1-norm to sum up the prediction errors across

different parties.

A.1 Swiss Referenda
In Switzerland, referenda occur when 50 000 people petition against

a law that has been accepted by the Parliament (optional refer-

endum) or when the Swiss Constitution is modified (mandatory

referendum). Popular initiatives occur when 100 000 people suggest

Table 5: Best hyperparameters for each model and dataset.

Country Region Likelihood λ D

Switzerland Munic. Gaussian 0.1 25

Bernoulli 0.01 25

U.S. State Gaussian 0.01 5

Bernoulli 0.01 7

Germany State Gaussian 0.01 7

Bernoulli 0.01 7

Germany District Gaussian 0.01 11

Bernoulli 0.01 11

a new law. For simplicity, we refer to optional referenda, mandatory

referenda, and popular initiatives as referenda.
We collected the data about Swiss referenda between 1981 and

2020 from the Swiss Federal Statistical Office. The data are published

through an API on the Swiss Open Data platform
9
We pre-process

the data as follows: First, we remove 12 regions (i.e., the munici-

palities) with missing values. This may happen because, each year,

some municipalities are merged or split, and some results might

not exist for some votes. Second, we merge the regions that change

their name, and we average their results.

In total, there areV = 326 referenda and R = 2186municipalities

in the data set used for the evaluation. The validation set consists of

referenda 275 to 300, and we use it to find the best hyperparameters.

The test set consists of referenda 301 to 326, and we use it to report

the results in Section 3. We test values for λ ∈ {0.001, 0.01, 0.1} and

for D ∈ {10, 25, 100, 250}. The best model with Gaussian likelihood

uses λ = 0.1 and D = 25 while the best model with Bernoulli

likelihood uses λ = 0.01 and D = 25. We tune the hyperparameters

over 10 random reveal orders per referendum, and we evaluate the

performance of our algorithm over 100 random reveal orders. For

the matrix factorization baseline, we use the best hyperparameters

as reported by Etter et al. [15], i.e., λU = 31.0, λV = 0.03, and

D = 25.

A.2 US Presidential Election
The U.S. presidential election relies on the Electoral College system.

In this system, 538 delegates are assigned to each state proportion-

ally to their population, and a candidate who obtains the majority of

votes in a state wins all the delegates in that state
10
. The candidate

who wins the majority of the delegates among all the states, i.e., at
least 270 delegates, is elected president. Because a candidate wins

the same number of delegates whether it receives 99% of the votes

or 51% of the votes, the collegial system leads to some unexpected

behaviour: A candidate may win the popular vote but lose the col-

legial vote. This happened only in two elections in our dataset: in

2000 and in 2016. This special structure adds one level of complexity

to the prediction task, and it requires further modeling assumptions.

To keep our approach general and because a mismatch between the

popular vote and the collegial vote is rare, we keep this specificity

of the U.S. electoral system for future work.

9
https://opendata.swiss/en/dataset/echtzeitdaten-am-abstimmungstag-zu-

eidgenoessischen-abstimmungsvorlagen

10
With the exception of Maine and Minnesota, which have a different rules.

https://opendata.swiss/en/dataset/echtzeitdaten-am-abstimmungstag-zu-eidgenoessischen-abstimmungsvorlagen
https://opendata.swiss/en/dataset/echtzeitdaten-am-abstimmungstag-zu-eidgenoessischen-abstimmungsvorlagen


We use the U.S. presidential election data between 1976 and

2016. The data is publicly available on Harvard Dataverse [23].

The data reports state-level election outcomes with the number

of votes received by each candidate. We transform the outcome

of the election into a binary outcome of Democrat candidate and

Republican candidate. Candidates from other parties are ignored,

and we normalize the results of the candidates from the two major

parties so that the sum of their votes is 1. In comparison to the

Swiss referenda, aggregating by number of voters will, therefore,

be inexact for the U.S. presidential elections. This is nonetheless a

reasonable approximation, as the number of votes received by can-

didates from other parties are marginal compared to the candidates

from the Republican party and from the Democrat party.

In total, there are V = 11 elections. The data include the results

of the District of Columbia (i.e., Washington D.C.), which has a

special status and is not considered a state; hence, we have R = 51

regions, combining 50 states and the District of Columbia. We

find the best hyperparameters using the vote prior to the 2012

election, and we evaluate the model on the 2016 election. We test

values for λ ∈ {0.001, 0.01, 0.1} and for D ∈ {3, 5, 7} as we only

have 9 elections prior to 2012. For both the Gaussian and Bernoulli

likelihoods, the best model uses λ = 0.01. The best model with

Gaussian likelihood uses D = 5 and the best model with Bernoulli

likelihood uses D = 7. We tune the hyperparameters over 100

random reveal orders per election, and we evaluate the performance

of our algorithm over 10000 random reveal orders.

A.3 German Parliamentary Election
We use the German parliamentary elections data published by the

European Elections Database (EED) [25]. In Germany, parliamen-

tary elections take place every 4 years. The EED reports results

between 1990 and 2009 on state level and between 1990 and 2005

on district level. Similarly to the U.S. presidential elections, we nor-

malize the results per region by keeping the main five parties in

Germany (CDU/CSU, SPD, FDP, the Greens, and the Left).

In total, there are V = 6 state-level elections and V = 5 district-

level elections. For state-level elections, we find the best hyperpa-

rameters using the votes prior to the 2005 elections and we evaluate

the model on the 2009 elections. For district-level elections, we find

the best hyperparameters using the votes prior to the 2002 elections

and we evaluate the model on the 205 elections. We test values for

λ ∈ {0.001, 0.01, 0.1} and for D ∈ {3, 7, 11}. For both datasets, both

the Gaussian and the Bernoulli likelihoods provide the same results.

For state-level elections, the best model uses λ = 0.01 and D = 7.

For district-level elections, the best model uses λ = 0.01 and D = 11.

In both cases, we tune the hyperparameters over 100 random re-

veal orders per election, and we evaluate the performance of our

algorithm over 1000 random reveal orders.
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